References
- V.K. Bhardwaj and N. Singh, Some sequence spaces defined by Orlicz functions, Demonstratio Math. 33 (2000), no. 3, 571–582.
- T. Bilgin, Some new difference sequences spaces defined by an Orlicz function, Filomat No. 17 (2003), 1–8.
- E.W. Chittenden, On the limit functions of sequences of continuous functions converging relatively uniformly, Trans. Amer. Math. Soc. 20 (1919), no. 2, 179–184.
- K. Demirci, A. Boccuto, S. Yıldız, and F. Dirik, Relative uniform convergence of a sequence of functions at a point and Korovkin-type approximation theorems, Positivity 24 (2020), no. 1, 1–11.
- K. Demirci, F. Dirik, and S. Yıldız, Approximation via statistical relative uniform convergence of sequences of functions at a point with respect to power series method, Afr. Mat. 34 (2023), no. 3, Paper No. 39, 10 pp.
- K. Demirci and S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math. 69 (2016), no. 3–4, 359–367.
- K.R. Devi and B.C. Tripathy, On relative uniform convergence of double sequences of functions, Proc. Nat. Acad. Sci. India Sect. A 92 (2022), no. 3, 367–372.
- K.R. Devi and B.C. Tripathy, Relative uniform convergence of difference sequence of positive linear functions, Trans. A. Razmadze Math. Inst. 176 (2022), no. 1, 37–43.
- K.R. Devi and B.C. Tripathy, Relative uniform convergence of difference double sequence of positive linear functions, Ric. Mat. 72 (2023), no. 2, 961–972.
- M. Güngör, M. Et, and Y. Altin, Strongly (Vσ, λ, q)-summable sequences defined by Orlicz functions, Appl. Math. Comput. 157 (2004), no. 2, 561–571.
- F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203.
- J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379–390.
- E.H. Moore, Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven, 1910.
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983.
- J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
- J. Musielak and W. Orlicz, On modular spaces of strongly summable sequences, Studia Math. 22 (1962/63), 127–146.
- J. Musielak and A. Waszak, Sequence spaces generated by moduli of smoothness, Rev. Mat. Univ. Complut. Madrid 8 (1995), no. 1, 91–105.
- H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508–512.
- S.D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math. 25 (1994), no. 4, 419–428.
- D. Rath and B.C. Tripathy, Characterization of certain matrix operations, J. Orissa Math. Soc. 8 (1989), 121–134.
- P.O. Şahin and F. Dirik, Statistical relative uniform convergence of double sequences of positive linear operators, Appl. Math. E-Notes 17 (2017), 207–220.
- W.L.C. Sargent, Some sequence spaces related to ℓp spaces, J. London Math. Soc. 35 (1960), 161–171.
- B.C. Tripathy, Matrix maps on the power-series convergent on the unit disc, J. Anal. 6 (1998), 27–31.
- B.C. Tripathy and S. Mahanta, On a class of sequences related to the ℓp space defined by Orlicz functions, Soochow J. Math. 29 (2003), no. 4, 379–391.
- B.C. Tripathy and M. Sen, On a new class of sequences related to the space ℓp, Tamkang J. Math. 33 (2002), no. 2, 167–171.
- S. Yıldız, K. Demirci, and F. Dirik, Korovkin theory via Pp-statistical relative modular convergence for double sequences, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 2, 1125–1141.