Have a personal or library account? Click to login
Relative Uniform Convergence of Quantum Difference Sequence of Functions Related to β„“p-Space Defined by Orlicz Function Cover

Relative Uniform Convergence ofΒ Quantum Difference Sequence ofΒ Functions Related toΒ β„“p-Space Defined byΒ Orlicz Function

By:Β Diksha DebbarmaΒ andΒ  Binod Chandra TripathyΒ Β 
Open Access
|Jan 2025

Full Article

1.
Introduction

A sequence (fn(x)) of functions, defined on a compact domain D, converges relatively uniformly to a limit function f(x) if there exists a function ΞΌ(x), called a scale function, such that for every small positive number Ι› there is an integer nΙ› such that for every n β‰₯ nΙ› the inequality |f(x)βˆ’fn(x)|≀Ρ|ΞΌ(x)|, \left| {f(x) - {f_n}(x)} \right| \le \varepsilon \left| {\mu (x)} \right|, holds uniformly in x on the interval D.

The above definition of a relatively uniform convergence of sequence of functions was formulated by Chittenden [3] using the notion which was first used by Moore [13]. Many additional scholars, including Demirci et al. ([4], [5]), Demirci and Orhan [6], Sahin and Dirik [21], Devi and Tripathy ([7], [8], [9]), as well as others, looked deeper into the idea. The term β€œcalculus without limits” is used to refer to quantum calculus, also referred to as q-calculus. The fundamental q-calculus formulae were discovered by Euler in the seventeenth century. However, Jackson [11] may have been the first to introduce the notion of the definite q-difference operator which is defined by Dqf(x)=f(qx)βˆ’f(x)x(qβˆ’1),xβ‰ 0, \matrix{{{D_q}f(x) = {{f(qx) - f(x)} \over {x(q - 1)}},} & {x \ne 0,} \cr} and Dqf(0) = fβ€²(0), where q is a fixed number, q ∈ (0, 1). The function f is defined on a q-geometric set A βŠ† ℝ (or β„‚) that is qx ∈ A whenever x ∈ A. Due to its use in a variety of mathematical fields, including orthogonal polynomials, fundamental hypergeometric functions, combinatorics, the calculus of variations, and the theory of relativity, quantum difference operators play an intriguing role in mathematics.

The term β€œOrlicz function” refers to a continuous, non-decreasing, convex function that has the following characteristics: π’ͺ(0) = 0, π’ͺ(x) > 0, for x > 0 and π’ͺ(x) β†’ ∞, as x β†’ ∞.

If there is a constant K > 0 such that π’ͺ(2x) ≀ Kπ’ͺ(x), for all values of x β‰₯ 0, then an Orlicz function π’ͺ is considered to satisfy the Ξ΄2-condition for all values x.

Lindenstrauss and Tzafriri [12] constructed the sequence space β„“O={xβˆˆΟ‰:βˆ‘n=1∞O(|xn|Ξ½)<∞,   for some ν>0}. {\ell_{\cal O}} = \left\{{x \in \omega :\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {{x_n}} \right|} \over \nu}} \right) < \infty,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0}} \right\}. The norm using the idea of Orlicz function is as follows, β€–xβ€–=inf{xβˆˆΟ‰:βˆ‘n=1∞(O(|xn|Ξ½))≀1}. \left\| x \right\| = \inf \left\{ {x \in \omega :\sum\limits_{n = 1}^\infty {\left({{\cal O}\left({{{\left| {{x_n}} \right|} \over \nu }} \right)} \right) \le 1} } \right\}. Numerous authors, such as Bhardwaj and Singh [1], Bilgin [2], Gung et al. [10], Tripathy and Mahanta [23], Parashar and Choudhary [19] are worked on Orlicz space. These motivated others to study different types of new sequence spaces defined by the Orlicz function.

In 1960, Sargent [22] proposed the m(Ο•) space, which is closely connected to the β„“p space. He examined a few m(Ο•) space characteristics. Afterward, it was examined from the sequence space point of view, by Rath and Tripathy [20], Tripathy [24], and Tripathy and Sen [25] and others.

We establish some geometric properties on the convexity of the space rumΟ•(π’ͺ, βˆ‡q, p). Banach spaces, which are complete, normed, linear, metric spaces with an additional characteristic of convexity of the norm, are the spaces which will be discussed in the present research. Japanese mathematician Nakano [18] introduced the concept of modular spaces. Also, many other researchers worked on modular space such as Musielak and Orlicz ([15], [16]), Musielak [14], Musielak and Wasak [17], Yildiz [26] etc.

Throughout the article Ο‰f, ΞΎs, P (fn) represents the space of sequences of functions, the subset of natural numbers of cardinality not greater than s, the permutation of the sequence of functions (fn), respectively.

2.
Definitions and background

In this article, we shall use the following known sequence spaces defined by Orlicz functions, for 0 < p < 1, ruβ„“p(O,βˆ‡q)={(fn)βˆˆΟ‰f:βˆ‘n=1∞(O(|βˆ‡qfn(x)|Ξ½))p<Ξ΅|ΞΌ(x)|,   for some ν>0},ruβ„“βˆž(O,βˆ‡q)={(fn)βˆˆΟ‰f:supnβ‰₯1O(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|,   for some ν>0},ruc0(O,βˆ‡q)={(fn)βˆˆΟ‰f:limnβ†’βˆžO(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)=0,   for some ν>0},ruc(O,βˆ‡q)={(fn)βˆˆΟ‰f:limnβ†’βˆžO(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)=L,   for some ν>0}. \matrix{{_{ru}{\ell_p}({\cal O},{\nabla_q}) = \left\{{({f_n}) \in {\omega_f}:\sum\limits_{n = 1}^\infty {{{\left({{\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over \nu}} \right)} \right)}^p} < \varepsilon |\mu (x)|,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0}} \right\},} \hfill \cr {_{ru}{\ell_\infty}({\cal O},{\nabla_q}) = \left\{{({f_n}) \in {\omega_f}:\mathop {\sup}\limits_{n \ge 1} {\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over \nu}} \right) < \varepsilon |\mu (x)|,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0} \right\},} \hfill \cr {_{ru}{c_0}({\cal O},{\nabla_q}) = \left\{{({f_n}) \in {\omega_f}:\mathop {\lim}\limits_{n \to \infty} {\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over {\nu |\mu (x)|}}} \right) = 0,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0} \right\},} \hfill \cr {_{ru}c({\cal O},{\nabla_q}) = \left\{{({f_n}) \in {\omega_f}:\mathop {\lim}\limits_{n \to \infty} {\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over {\nu |\mu (x)|}}} \right) = L,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0} \right\}.} \hfill \cr}

In this article, we introduce the following spaces, for 0 < p < 1, rumΟ•(O,βˆ‡q,p)={(fn)βˆˆΟ‰f:supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½)p<Ξ΅|ΞΌ(x)|,   for some ν>0},runΟ•(O,βˆ‡q,p)={(fn)βˆˆΟ‰f:supun∈P(fn)βˆ‘n=1∞(O(|βˆ‡qun(x)|ΔϕnΞ½))p<Ξ΅|ΞΌ(x)|,   for some ν>0},rumΟ•(O,βˆ‡q)={(fn)βˆˆΟ‰f:supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|,   for some ν>0},runΟ•(O,βˆ‡q)={(fn)βˆˆΟ‰f:supun∈P(fn)βˆ‘n=1∞O(|βˆ‡qun(x)|ΔϕnΞ½)<Ξ΅|ΞΌ(x)|,   for some ν>0}. \matrix{{_{ru}{m_\phi}({\cal O},{\nabla_q},p) = \left\{{({f_n}) \in {\omega_f}:\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{|{\nabla_q}{f_n}(x)|} \over \nu}} \right)}^p} < \varepsilon |\mu (x)|,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0}} \right\},} \hfill \cr {_{ru}{n_\phi}({\cal O},{\nabla_q},p) = \left\{{({f_n}) \in {\omega_f}:\mathop {\sup}\limits_{{u_n} \in P({f_n})} \sum\limits_{n = 1}^\infty {{{\left({{\cal O}\left({{{|{\nabla_q}{u_n}(x)|\Delta {\phi_n}} \over \nu}} \right)} \right)}^p} < \varepsilon |\mu (x)|,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0}} \right\},} \hfill \cr {_{ru}{m_\phi}({\cal O},{\nabla_q}) = \left\{{({f_n}) \in {\omega_f}:\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over \nu}} \right) < \varepsilon |\mu (x)|,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0}} \right\},} \hfill \cr {_{ru}{n_\phi}({\cal O},{\nabla_q}) = \left\{{({f_n}) \in {\omega_f}:\mathop {\sup}\limits_{{u_n} \in P({f_n})} \sum\limits_{n = 1}^\infty {{\cal O}\left({{{|{\nabla_q}{u_n}(x)|\Delta {\phi_n}} \over \nu}} \right) < \varepsilon |\mu (x)|,\,\,\,{\rm{for}}\,{\rm{some}}\,\nu > 0}} \right\}.} \hfill \cr}

Definition 2.1

A subset Zf βŠ‚ Ο‰f is said to be convergence free, if (fn) ∈ Zf implies (gn) ∈ Zf for any sequence (gn) such that gn(x) = 0 whenever fn(x) = 0 for x ∈ D.

Definition 2.2

A subset Zf βŠ‚ Ο‰f is said to be symmetric if (fn) ∈ Zf implies (fΟ€(n)) ∈ Zf, where Ο€ is a permutation of β„•.

Definition 2.3

A subset Zf βŠ‚ Ο‰f is said to be solid or normal, if (fn) ∈ Zf implies (gn) ∈ Zf for all sequence (gn) such that |gn(x)| ≀ |fn(x)| for every n ∈ β„• and for all x ∈ D.

Definition 2.4

Let Zf βŠ‚ Ο‰f be a space of sequences of functions. Then Zf is said to be sequence algebra if there is defined a product βˆ— on Zf such that (fn),(gn)∈Zfβ‡’(fn)*(gn)∈Zf. ({f_n}),({g_n}) \in {Z_f} \Rightarrow ({f_n})*({g_n}) \in {Z_f}.

Lemma 2.5

(Tripathy and Sen [25, Theorem 7]). β„“pβŠ†m(Ο•,p)βŠ†β„“βˆž. {\ell_p} \subseteq m(\phi,p) \subseteq {\ell_\infty}.

In this section, we also give some known definitions of geometric terms related to normed spaces.

Definition 2.6

Let Zf be a subset of a linear space. Then

  • (1)

    Zf is called convex if and only if (fn), (gn) ∈ Zf, Ξ»1 + Ξ»2 = 1, Ξ»1 β‰₯ 0, Ξ»2 β‰₯ 0 implies (Ξ»1fn + Ξ»2gn) ∈ Zf;

  • (2)

    Zf is called balanced if and only if (fn) ∈ Zf, |Ξ»| ≀ 1 β‡’ (Ξ»fn) ∈ Zf ;

  • (3)

    Zf is a called absolutely convex if and only if (fn), (gn) ∈ Zf, |Ξ»1|+|Ξ»2| ≀ 1 implies (Ξ»1fn + Ξ»2gn) ∈ Zf.

Nakano [18] considered the definition of modular space as follows,

Definition 2.7

Let X be a linear space. A function ΞΆ : X β†’ [0, ∞) is called modular function if

  • (1)

    ΞΆ(x) = 0 if and only if x = ΞΈ,

  • (2)

    ΞΆ(Ξ±x) = ΞΆ(x) for all scalars Ξ± with |Ξ±| = 1,

  • (3)

    ΞΆ(Ξ±x + Ξ²y) < ΞΆ(x) + ΞΆ(y), for all x, y ∈ X and Ξ±, Ξ² β‰₯ 0, |Ξ±| = |Ξ²| = 1. Further, the modular ΞΆ is called convex if

  • (4)

    ΞΆ(Ξ±x + Ξ²y) ≀ Ξ±ΞΆ(x) + Ξ²ΞΆ(y) holds for all x, y ∈ X and all Ξ±, Ξ² β‰₯ 0 with Ξ± + Ξ² = 1.

For any modular ΞΆ on X the space XΞΆ={x∈X:limΞ»β†’0+ΞΆ(Ξ»x)=0} {X_\zeta} = \left\{{x \in X:\mathop {\lim}\limits_{\lambda \to {0^ +}} \zeta (\lambda x) = 0} \right\} is called the modular space. A sequence (xn) of elements of XΞΆ is called modular convergent to x ∈ XΞΆ if there exists a Ξ» > 0 such that ΞΆΞ»(xn βˆ’ x) β†’ 0, as n β†’ ∞. If ΞΆ is convex modular, then we have the following formula, β€–xβ€–L=inf{Ξ»>0:ΞΆ(xΞ»)≀1}. {\left\| x \right\|_L} = \inf \left\{{\lambda > 0:\zeta \left({{x \over \lambda}} \right) \le 1} \right\}.

Definition 2.8

A Banach space is said to be uniformly convex if, to each Ι› > 0, 0 < Ι› ≀ 2, there corresponds a ΞΆ(Ι›) > 0 such that the following condition holds: β€–xβ€–=β€–yβ€–=1,β€–xβˆ’yβ€–β‰₯Ξ΅β‡’12β€–x+y‖≀1βˆ’ΞΆ(Ξ΅). \matrix{{\left\| x \right\| = \left\| y \right\| = 1,} & {\left\| {x - y} \right\| \ge \varepsilon} & \Rightarrow & {{1 \over 2}\left\| {x + y} \right\| \le 1 - \zeta (\varepsilon).} \cr}

3.
Main results
Theorem 3.1

The space rumΟ•(π’ͺ, βˆ‡q, p) is a linear space, for p > 0.

Proof

Let (fn), (gn) ∈ rumΟ•(π’ͺ, βˆ‡q, p) and Ξ±, Ξ² be two scalars. Then there exist positive numbers Ξ½1 and Ξ½2 such that supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½1))p<Ξ΅1|ΞΌ1(x)|, \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {{\nu_1}}}} \right)} \right)}^p} < {\varepsilon_1}\left| {{\mu_1}(x)} \right|, and supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qgn(x)|Ξ½2))p<Ξ΅2|ΞΌ2(x)|. \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {{\nabla_q}{g_n}(x)} \right|} \over {{\nu_2}}}} \right)} \right)}^p} < {\varepsilon_2}\left| {{\mu_2}(x)} \right|. Let Ξ½3 = max{|Ξ±|Ξ½1, |Ξ²|Ξ½2}. Since π’ͺ is a non-decreasing convex function, supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ±βˆ‡qfn(x)+Ξ²βˆ‡qgn(x)|Ξ½3))p                        =supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ±βˆ‡qfn(x)|Ξ½3+|Ξ²βˆ‡qgn(x)|Ξ½3))p                        ≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ±βˆ‡qfn(x)|Ξ½3))p                             +supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ²βˆ‡qgn(x)|Ξ½3))p                        ≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½1))p                             +supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qgn(x)|Ξ½2))p                        <max{Ξ΅1,Ξ΅2}max{|ΞΌ1(x)|,|ΞΌ2(x)|}<∞. \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {\alpha {\nabla_q}{f_n}(x) + \beta {\nabla_q}{g_n}(x)} \right|} \over {{\nu_3}}}} \right)} \right)}}^p}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {\alpha {\nabla_q}{f_n}(x)} \right|} \over {{\nu_3}}} + {{\left| {\beta {\nabla_q}{g_n}(x)} \right|} \over {{\nu_3}}}} \right)} \right)}}^p}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {\alpha {\nabla_q}{f_n}(x)} \right|} \over {{\nu_3}}}} \right)} \right)}}^p}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {\beta {\nabla_q}{g_n}(x)} \right|} \over {{\nu_3}}}} \right)} \right)}}^p}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {{\nu_1}}}} \right)} \right)}}^p}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\sum\limits_{n \in \sigma} {\left({{\cal O}\left({{{\left| {{\nabla_q}{g_n}(x)} \right|} \over {{\nu_2}}}} \right)} \right)}}^p}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, < \max \{{\varepsilon_1},{\varepsilon_2}\} \max \{|{\mu_1}(x)|,|{\mu_2}(x)|\} < \infty.} \hfill \cr} Thus, (Ξ±βˆ‡qfn + Ξ²βˆ‡qgn) ∈ rumΟ•(π’ͺ, βˆ‡q, p). Hence, rumΟ•(π’ͺ, βˆ‡q, p) is a linear space.

The following result is a consequence of the above Theorem 3.1

Corollary 3.2

The classes of sequences of functions runΟ•(π’ͺ, βˆ‡q, p), rumΟ•(π’ͺ, βˆ‡q), runΟ•(π’ͺ, βˆ‡q) are linear spaces.

Theorem 3.3

The space rumΟ•(π’ͺ, βˆ‡q, p) is a normed space, with the norm (3.1) β€–fβ€–rumΟ•(O,βˆ‡q,p)=inf{Ξ½>0:βˆ‘n=1∞O(|fn(x)|Ξ½|ΞΌ(x)|)+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p)1p≀1}, {\left\| f \right\|_{_{_{ru}}{m_\phi}({\cal O},{\nabla_q},p)}} = \inf \left\{{\nu > 0:\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {{f_n}\left(x \right)} \right|} \over {\nu \left| {\mu \left(x \right)} \right|}}} \right)} + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\left({\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over {\nu |\mu (x)|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}} \le 1} \right\}, for 1 ≀ p < ⧜.

The space rumΟ•(π’ͺ, βˆ‡q, p) is a p-normed space, with the norm (3.2) β€–fβ€–rumΟ•(O,βˆ‡q,p)=inf{Ξ½>0:βˆ‘n=1∞(O(|fn(x)|Ξ½|ΞΌ(x)|))p+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p≀1}, {\left\| f \right\|_{_{_{ru}}{m_\phi}({\cal O},{\nabla_q},p)}} = \inf \left\{{\nu > 0:\sum\limits_{n = 1}^\infty {{{\left({{\cal O}\left({{{\left| {{f_n}\left(x \right)} \right|} \over {\nu \left| {\mu \left(x \right)} \right|}}} \right)} \right)}^p}} + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over {\nu |\mu (x)|}}} \right)} \right)}^p}} \le 1} \right\}, for 0 < p < 1.

Proof

We check the conditions of norm:

  • (1)

    Clearly, β€–fβ€–rumΟ•(O,βˆ‡q,p)β‰₯0,for all (βˆ‡qfn)∈rumΟ•(O,βˆ‡q,p). \matrix{{{{\left\| f \right\|}_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}} \ge 0,} & {{\rm{for}}\,{\rm{all}}\,({\nabla_q}{f_n}) \in {\,_{ru}}{m_\phi}({\cal O},{\nabla_q},p).} \cr}

  • (2)

    Clearly, βˆ₯fβˆ₯ rumΟ•(π’ͺ,βˆ‡q,p) = 0, if and only if fn(x)=ΞΈΒ― {f_n}(x) = \overline \theta , the null operator, for all n ∈ β„• and x ∈ D.

  • (3)

    We have, for f = (fn) ∈ rumΟ•(π’ͺ, βˆ‡q, p) and any scalar Ξ», β€–Ξ»βˆ‡qfβ€–rumΟ•(O,βˆ‡q,p)=supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ»βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p=|Ξ»|pβ€–βˆ‡qfβ€–rumΟ•(O,βˆ‡q,p). {\left\| {\lambda {\nabla_q}f} \right\|_{_{_{ru}}{m_\phi}({\cal O},{\nabla_q},p)}} = \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{|\lambda {\nabla_q}{f_n}(x)|} \over {\nu |\mu (x)|}}} \right)} \right)}^p} = {{\left| \lambda \right|}^p}{{\left\| {{\nabla_q}f} \right\|}_{_{_{ru}}{m_\phi}({\cal O},{\nabla_q},p)}}}.

  • (4)

    Let (fn), (gn) ∈ rumΟ•(π’ͺ, βˆ‡q, p). Then, supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡q(fn(x)+gn(x))|Ξ½|ΞΌ(x)|))p≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈Dβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈Dβˆ‘nβˆˆΟƒ(O(|βˆ‡qgn(x)|Ξ½|ΞΌ(x)|))p. \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}({f_n}(x) + {g_n}(x))} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \hfill \cr {\le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} \sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}} + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} \sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{g_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}.} \hfill \cr}

Therefore, β€–f+gβ€–rumΟ•(O,βˆ‡q,p) ≀‖fβ€–rumΟ•(O,βˆ‡q,p)+β€–gβ€–rumΟ•(O,βˆ‡q,p). {\left\| {f + g} \right\|_{_{ru}{m_{^\phi}}({\cal O},{\nabla_q},p)}}\, \le {\left\| f \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}} + {\left\| g \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}}.

Thus, the space rumΟ•(π’ͺ, βˆ‡q, p) is a p-normed space with the norm (3.2). Similarly, for 1 ≀ p < ∞, the space rumΟ•(π’ͺ, βˆ‡q, p) is a norm space with the norm (3.1).

Theorem 3.4

If (Z, ru) is complete then the space rumΟ•(π’ͺ, βˆ‡q, p) is complete with the norm (3.1).

Proof

Let (fn) ∈ rumΟ•(π’ͺ, βˆ‡q, p) be a Cauchy sequence of functions, where fn=(fni)=((f1i),(f2i),…)∈rumΟ•(O,βˆ‡q,p) {f_n} = (f_n^i) = ((f_1^i),(f_2^i), \ldots) \in {\,_{ru}}{m_\phi}({\cal O},{\nabla_q},p) , for each i ∈ β„•. Let ρ > 0 and f0 > 0 be fixed. Then, for each Ρρf0>0 {\varepsilon \over {\rho {f_0}}} > 0 there exists a positive integer n0(Ι›) such that (3.3) h(fiβˆ’fj)<Ρρf0,for all i,jβ‰₯n0,implies     inf{Ξ½>0:βˆ‘n=1∞O(|fni(x)βˆ’fnj(x)|Ξ½|ΞΌ(x)|)+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘n=Οƒ(O(|βˆ‡q(fni(x)βˆ’fnj(x))|Ξ½|ΞΌ(x)|))p)1p≀1}<Ρρf0, \matrix{{\matrix{{h({f^i} - {f^j}) < {\varepsilon \over {\rho {f_0}}},} \hfill & {{\rm{for}}\,{\rm{all}}} \hfill \cr} \,i,j \ge {n_0},} \hfill \cr {{\rm{implies}}\,\,\,\,\,\inf \left\{{\nu > 0:\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {f_n^i(x) - f_n^j(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\left({{{\sum\limits_{n = \sigma}^{} {\left({{\cal O}\left({{{\left| {{\nabla_q}(f_n^i(x) - f_n^j(x))} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}}^p}} \right)}^{{1 \over p}}} \le 1} \right\} < {\varepsilon \over {\rho {f_0}}},} \hfill \cr} for all i, j β‰₯ n0. Then we have for all i, j β‰₯ n0, βˆ‘n=1∞O(|fni(x)βˆ’fnj(x)|h(fiβˆ’fj)|ΞΌ(x)|)+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘n=Οƒ(O(|βˆ‡q(fni(x)βˆ’fnj(x))|h(fiβˆ’fj)|ΞΌ(x)|))p)1p≀1. \sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {f_n^i(x) - f_n^j(x)} \right|} \over {h({f^i} - {f^j})\left| {\mu (x)} \right|}}} \right)} + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi _s},x \in D} {1 \over {{\phi _s}}}{\left({\sum\limits_{n = \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla _q}(f_n^i(x) - f_n^j(x))} \right|} \over {h({f^i} - {f^j})\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} \le 1 or, βˆ‘n=1∞O(|fni(x)βˆ’fnj(x)|h(fiβˆ’fj)|ΞΌ(x)|)≀1 \sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {f_n^i(x) - f_n^j(x)} \right|} \over {h({f^i} - {f^j})\left| {\mu (x)} \right|}}} \right) \le 1} and supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘n=Οƒ(O(|βˆ‡q(fni(x)βˆ’fnj)|h(fiβˆ’fj)|ΞΌ(x)|))p)1p≀1. \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\left({\sum\limits_{n = \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}(f_n^i(x) - f_n^j)} \right|} \over {h({f^i} - {f^j})\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} \le 1.

At first, we consider O(|fni(x)βˆ’fnj(x)|h(fiβˆ’fj)|ΞΌ(x)|)≀1,for all i,jβ‰₯n0. \matrix{{{\cal O}\left({{{\left| {f_n^i(x) - f_n^j(x)} \right|} \over {h({f^i} - {f^j})\left| {\mu (x)} \right|}}} \right) \le 1,} & {{\rm{for}}\,{\rm{all}}\,i,j \ge {n_0}} \cr}. We can find ρ > 0 with (ρf02)β‰₯max(1,Ο•1) \left({{{\rho {f_0}} \over 2}} \right) \ge \max \left({1,{\phi_1}} \right) , such that (3.4) βˆ‘n=1∞O(|fni(x)βˆ’fnj(x)|h(fiβˆ’fj)|ΞΌ(x)|)≀O(ρf02),|fni(x)βˆ’fnj(x)||ΞΌ(x)|<ρf02β‹…h(fiβˆ’fj),|fni(x)βˆ’fnj(x)||ΞΌ(x)|<ρf02⋅Ρρf0<Ξ΅2. \matrix{{\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {f_n^i(x) - f_n^j(x)} \right|} \over {h({f^i} - {f^j})\left| {\mu (x)} \right|}}} \right) \le {\cal O}\left({{{\rho {f_0}} \over 2}} \right),}} \hfill \cr {{{\left| {f_n^i(x) - f_n^j(x)} \right|} \over {\left| {\mu (x)} \right|}} < {{\rho {f_0}} \over 2} \cdot h({f^i} - {f^j}),} \hfill \cr {{{\left| {f_n^i(x) - f_n^j(x)} \right|} \over {\left| {\mu (x)} \right|}} < {{\rho {f_0}} \over 2} \cdot {\varepsilon \over {\rho {f_0}}} < {\varepsilon \over 2}.} \hfill \cr} Hence, (fni(x))i=1∞ (f_n^i(x))_{i = 1}^\infty , for all n = 1, 2, 3,..., n is a Cauchy sequence in D, w.r.t. the scale function ΞΌ(x), for x ∈ D.

Now, from the second part we get supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘n=Οƒ(O(|βˆ‡q(fni(x)βˆ’fnj(x))|h(fiβˆ’fj)|ΞΌ(x)|))p)1p≀1, \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\left({\sum\limits_{n = \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}(f_n^i(x) - f_n^j(x))} \right|} \over {h({f^i} - {f^j})\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} \le 1, for all i, j β‰₯ n0 and n ∈ β„•, (3.5) (O(|βˆ‡q(fni(x)βˆ’fnj(x))|h(fiβˆ’fj)|ΞΌ(x)|))p≀ϕ1,for all i,jβ‰₯n0 and nβˆˆβ„•,(O(|βˆ‡q(fni(x)βˆ’fnj(x))|h(fiβˆ’fj)|ΞΌ(x)|))p≀O(ρf02)for all i,jβ‰₯n0 and nβˆˆβ„•,|βˆ‡qfni(x)βˆ’βˆ‡qfnj(x)|<ρf02⋅Ρρf0=Ξ΅2. \matrix{{\matrix{{{{\left({{\cal O}\left({{{\left| {{\nabla_q}\left({f_n^i\left(x \right) - f_n^j\left(x \right)} \right)} \right|} \over {h\left({{f^i} - {f^j}} \right)\left| {\mu \left(x \right)} \right|}}} \right)} \right)}^p} \le {\phi_1},} & {{\rm{for}}\,{\rm{all}}\,i,j \ge {n_0}\,{\rm{and}}\,n \in {\mathbb N},} \cr}} \cr {\matrix{{{{\left({{\cal O}\left({{{\left| {{\nabla_q}\left({f_n^i\left(x \right) - f_n^j\left(x \right)} \right)} \right|} \over {h\left({{f^i} - {f^j}} \right)\left| {\mu \left(x \right)} \right|}}} \right)} \right)}^p} \le {\cal O}\left({{{\rho {f_0}} \over 2}} \right)} & {{\rm{for}}\,{\rm{all}}\,i,j \ge {n_0}\,{\rm{and}}\,n \in {\mathbb N},} \cr}} \cr {\left| {{\nabla_q}f_n^i\left(x \right) - {\nabla_q}f_n^j\left(x \right)} \right| < {{\rho {f_0}} \over 2} \cdot {\varepsilon \over {\rho {f_0}}} = {\varepsilon \over 2}.} \cr} Therefore, (βˆ‡qfni)n=1∞ ({\nabla_q}f_n^i)_{n = 1}^\infty is a Cauchy sequence in D, w.r.t. the scale function ΞΌ(x), for x ∈ D. Hence, (βˆ‡qfni)n=1∞ ({\nabla_q}f_n^i)_{n = 1}^\infty is convergent in D, w.r.t. the scale function ΞΌ(x), x ∈ D, for each n ∈ β„•. By equations (3.4) and (3.5), the sequence of the functions (fni) (f_n^i) is a Cauchy sequence in D, w.r.t. the scale function ΞΌ(x), for x ∈ D, for all n ∈ β„• and it is convergent in D. Therefore for each n ∈ β„•, there exists (fn) ∈ (Z, ru) such that (fniβˆ’fn|ΞΌ(x)|)β†’0 \left({{{f_n^i - {f_n}} \over {\left| {\mu (x)} \right|}}} \right) \to 0 , as i β†’ ∞ for each n ∈ β„•.

Using the continuity of π’ͺ we have βˆ‘n=1∞O(|fni(x)βˆ’limjβ†’βˆžfnj(x)|Ξ½|ΞΌ(x)|)+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O(|βˆ‡q(fni(x)βˆ’limjβ†’βˆžfnj(x))|Ξ½|ΞΌ(x)|))p)1p≀1, \sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {f_n^i(x) - {{\lim}_{j \to \infty}}f_n^j(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\left({\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}(f_n^i(x) - {{\lim}_{j \to \infty}}f_n^j(x))} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} \le 1, for some Ξ½ > 0, βˆ‘n=1∞O(|fni(x)βˆ’fn(x)|Ξ½|ΞΌ(x)|)+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O(|βˆ‡q(fni(x)βˆ’fn(x))|Ξ½|ΞΌ(x)|))p)1p≀1, \sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {f_n^i(x) - {f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\left({\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}(f_n^i(x) - {f_n}(x))} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} \le 1, for some Ξ½ > 0 and j β†’ ∞. Taking the infimum value of Ξ½β€²s in the above and making use of (3.3) we get, inf{Ξ½>0:βˆ‘n=1∞O(|fni(x)βˆ’fn(x)|Ξ½|ΞΌ(x)|)+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O(|βˆ‡q(fni(x)βˆ’fn(x))|Ξ½|ΞΌ(x)|))p)1p≀1}<Ρρf0, \inf \left\{{\nu > 0:\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {f_n^i(x) - {f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right) + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\left({\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}\left({f_n^i(x) - {f_n}(x)} \right)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}} \le 1}} \right\} < {\varepsilon \over {\rho {f_0}}}, for all i β‰₯ n0. Therefore, (fni(x)βˆ’fn(x))∈rumΟ•(O,βˆ‡p,p) (f_n^i(x) - {f_n}(x)) \in {\,_{ru}}{m_\phi }({\cal O},{\nabla _p},p) , for all n β‰₯ n0. Let i β‰₯ n0 and since rumΟ•(π’ͺ, βˆ‡q, p) is a linear space, therefore (fn(x))=(fni(x))+(fn(x)βˆ’fni(x))∈rumΟ•(O,βˆ‡q,p). ({f_n}(x)) = (f_n^i(x)) + ({f_n}(x) - f_n^i(x)) \in {\,_{ru}}{m_\phi}({\cal O},{\nabla_q},p). Hence, the space rumΟ•(π’ͺ, βˆ‡q, p) is complete.

In view of Theorem 3.4, we formulate the following result without proof.

Theorem 3.5

The space runΟ•(π’ͺ, βˆ‡q, p) is complete.

Theorem 3.6

ruβ„“p(π’ͺ, βˆ‡q) βŠ† ruc0(π’ͺ, βˆ‡q) βŠ† ruc(π’ͺ, βˆ‡q) βŠ† ruβ„“βˆž(π’ͺ, βˆ‡q).

The above theorem is easy to prove. That is why we avoid the proof of the above theorem.

Proposition 3.7

Let 0 < p < 1. Then the inclusion relation ruβ„“p(π’ͺ, βˆ‡q) βŠ‚ rumΟ•(π’ͺ, βˆ‡q, p) holds and it is strict.

Proof

Taking gn(x)=O(|βˆ‡qfn(x)|Ξ½) {g_n}(x) = {\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right) , for all n ∈ β„•, the inclusion follows from Lemma 2.5.

The inclusion is strict following the example below.

Example 3.8

Consider the sequence of functions fn : [0, 1] β†’ ℝ, defined by fn(x)=nx,for all x∈[0,1]. \matrix{{{f_n}(x) = nx,} & {{\rm{for}}\,{\rm{all}}\,x \in [0,1].} \cr} Consider another non-decreasing sequence Ο•n = n, for all n ∈ β„• and also consider an Orlicz function π’ͺ : [0, ∞) β†’ [0, ∞) such that, π’ͺ(x) = x2. Thus, (fn) ∈ rumΟ•(π’ͺ, βˆ‡q, p) w.r.t. the scale function ΞΌ(x) = x2, for all x ∈ [0, 1]. But (fn) βˆ‰ ruβ„“p(π’ͺ, βˆ‡q). Hence, ruβ„“p(O,βˆ‡q)β€‰βŠ‰rumΟ•(O,βˆ‡q,p). _{ru}{\ell_p}({\cal O},{\nabla_q})\, \nsupseteq {\,_{ru}}{m_\phi}({\cal O},{\nabla_q},p).

Theorem 3.9

Let π’ͺ, π’ͺ1, π’ͺ2 be Orlicz functions satisfying βˆ†2 condition. Then

  • (1)

    rumΟ•(π’ͺ1, βˆ‡q, p) βŠ† rumΟ•(π’ͺ β—¦ π’ͺ1, βˆ‡q, p),

  • (2)

    rumΟ•(π’ͺ1, βˆ‡q, p) ∩ rumΟ•(π’ͺ2, βˆ‡q, p) βŠ† rumΟ•(π’ͺ1 + π’ͺ2, βˆ‡q, p).

Proof

(1) Let (fn) ∈ rumΟ•(π’ͺ1, βˆ‡q, p). Then there exists Ξ½ > 0 such that, supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O(|βˆ‡q(fn(x))|Ξ½|ΞΌ(x)|))p)1p<Ξ΅. \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\left({\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}({f_n}(x))} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} < \varepsilon. Let Ξ· be such that π’ͺ(t) < Ξ·, for all 0 ≀ t < Ξ· < 1. Note that βˆ‘nβˆˆΟƒO(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))=βˆ‘1O(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))+βˆ‘2O(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)), \sum\limits_{n \in \sigma} {{\cal O}\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)} = \sum\limits_1 {{\cal O}\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)} + \sum\limits_2 {{\cal O}\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}, where the first summation is over O1(|fn(x)|Ξ½|ΞΌ(x)|)≀η {{\cal O}_1}\left({{{\left| {{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right) \le \eta , and the second summation is over O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)>Ξ· {{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right) > \eta . Since π’ͺ is continuous, by the remark we have (3.6) βˆ‘1O(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))≀O(1)βˆ‘1O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|). \sum\limits_1 {{\cal O}\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)} \le {\cal O}\left(1 \right)\sum\limits_1 {{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)}. For O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)>Ξ· {{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right) > \eta , we use the fact that O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)<O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)Ξ·βˆ’1≀1+O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)Ξ·βˆ’1. {{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right) < {{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){\eta^{- 1}} \le 1 + {{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){\eta^{- 1}}. Because π’ͺ is convex and non-decreasing, O(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))<O(1+O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)1Ξ·)≀12O(2)+12O(2O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)1Ξ·)=12O(2)+12O(2)(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)1Ξ·). \matrix{{{\cal O}\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)} \hfill & {< {\cal O}\left({1 + {{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){1 \over \eta}} \right)} \hfill \cr {} \hfill & {\le {1 \over 2}{\cal O}(2) + {1 \over 2}{\cal O}\left({2{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){1 \over \eta}} \right)} \hfill \cr {} \hfill & {= {1 \over 2}{\cal O}(2) + {1 \over 2}{\cal O}(2)\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){1 \over \eta}} \right).} \hfill \cr} There exists K > 0 such that, given that π’ͺ meets the requirement of βˆ†2, O(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))≀12KO(2)O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)1Ξ·+12KO(2)O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)1Ξ·=KO(2)O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)1Ξ·. \matrix{{{\cal O}\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)} \hfill & {\le {1 \over 2}K{\cal O}\left(2 \right){{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){1 \over \eta} + {1 \over 2}K{\cal O}\left(2 \right){{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){1 \over \eta}} \hfill \cr {} \hfill & {= K{\cal O}\left(2 \right){{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right){1 \over \eta}.} \hfill \cr} Hence, (3.7) βˆ‘1O(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))≀max{1,(KO(2)Ξ·βˆ’1)}1Ο•sβˆ‘2O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)≀max{1,(KO(2)Ξ·βˆ’1)}1Ο•sβˆ‘nβˆˆΟƒO1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|) \matrix{{\sum\limits_1 {{\cal O}\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}} \hfill & {\le \max \{1,(K{\cal O}(2){\eta^{- 1}})\} {1 \over {{\phi_s}}}\sum\limits_2 {{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)}} \hfill \cr {} \hfill & {\le \max \{1,(K{\cal O}(2){\eta^{- 1}})\} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)}} \hfill \cr} From inequalities (3.6) and (3.7) it follows that supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)≀max{1,(KO(2)Ξ·βˆ’1)}1Ο•sβˆ‘2O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|),supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p)1p≀max{1,(KO(2)Ξ·βˆ’1)}1Ο•s(βˆ‘2(O1(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p)1p<Ξ΅. \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \le \max \{1,(K{\cal O}(2){\eta^{- 1}})\} {1 \over {{\phi_s}}}\sum\limits_2 {{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)},} \hfill \cr {\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\left({\sum\limits_{n \in \sigma} {{{\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}} \le \max \{1,(K{\cal O}(2){\eta^{- 1}})\} {1 \over {{\phi_s}}}{{\left({\sum\limits_2 {{{\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}} < \varepsilon.} \hfill \cr} Hence, (fn) ∈ rumΟ•(π’ͺ1 β—¦ π’ͺ2, βˆ‡q, p).

(2) Let (fn) ∈ rumΟ•(π’ͺ1, βˆ‡q, p) ∩ rumΟ•(π’ͺ2, βˆ‡q, p). Therefore, (fn) ∈ rumΟ•(π’ͺ1, βˆ‡q, p) and (fn) ∈ rumΟ•(π’ͺ2, βˆ‡q, p). Consequently, there are Ξ½1 > 0 and Ξ½2 > 0 such that supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O1(|βˆ‡qfn(x)|Ξ½1|ΞΌ(x)|))p)1p<Ξ΅2, \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\left({\sum\limits_{n \in \sigma} {{{\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {{\nu_1}\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} < {\varepsilon \over 2}, and supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O1(|βˆ‡qfn(x)|Ξ½2|ΞΌ(x)|))p)1p<Ξ΅2. \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\left({\sum\limits_{n \in \sigma} {{{\left({{{\cal O}_1}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {{\nu_2}\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)^{{1 \over p}}} < {\varepsilon \over 2}. Let Ξ½3 = max{Ξ½1, Ξ½2}. Then supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ((O1+O2)(|βˆ‡qfn(x)|Ξ½1|ΞΌ(x)|))p)1p                    ≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O1(|βˆ‡qfn(x)|Ξ½1|ΞΌ(x)|))p)1p                       +supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O2(|βˆ‡qfn(x)|Ξ½1|ΞΌ(x)|))p)1p                     <Ξ΅2+Ξ΅2=Ξ΅. \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi _s},x \in D} {1 \over {{\phi _s}}}{{\left({\sum\limits_{n \in \sigma} {{{\left({({{\cal O}_1} + {{\cal O}_2})\left({{{\left| {{\nabla _q}{f_n}(x)} \right|} \over {{\nu _1}\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi _s},x \in D} {1 \over {{\phi _s}}}{{\left({\sum\limits_{n \in \sigma} {{{\left({{{\cal O}_1}\left({{{\left| {{\nabla _q}{f_n}(x)} \right|} \over {{\nu _1}\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi _s},x \in D} {1 \over {{\phi _s}}}{{\left({\sum\limits_{n \in \sigma} {{{\left({{{\cal O}_2}\left({{{\left| {{\nabla _q}{f_n}(x)} \right|} \over {{\nu _1}\left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, < {\varepsilon \over 2} + {\varepsilon \over 2} = \varepsilon.} \hfill \cr} Therefore, (fn) ∈ rumΟ•(π’ͺ1 + π’ͺ2, βˆ‡q, p). Hence, rumΟ•(O1,βˆ‡q,p)∩rumΟ•(O2,βˆ‡q,p)βŠ†rumΟ•(O1+O2,βˆ‡q,p). _{ru}{m_\phi}\left({{{\cal O}_1},{\nabla_q},p} \right) \cap {\,_{ru}}{m_\phi}\left({{{\cal O}_2},{\nabla_q},p} \right) \subseteq {\,_{ru}}{m_\phi}\left({{{\cal O}_1} + {{\cal O}_2},{\nabla_q},p} \right).

Lemma 3.10

rumΟ•(π’ͺ, βˆ‡q) βŠ† rumΟ•(π’ͺ, βˆ‡q, p).

Proof

Let (fn) ∈ rumΟ•(π’ͺ, βˆ‡q). Then there exists Ξ½ > 0 such that supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|. \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right) < \varepsilon \left| {\mu (x)} \right|}. Hence, for each fixed s, βˆ‘n=1∞O(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|Ο•s,ΟƒβˆˆΞΎs,supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D(βˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p)1p<Ρϕs,ΟƒβˆˆΞΎs,supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•s(βˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p)1p<Ξ΅,ΟƒβˆˆΞΎs,(fn)∈rumΟ•(O,βˆ‡q,p). \matrix{{\matrix{{\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right) < \varepsilon \left| {\mu (x)} \right|{\phi_s},}} & {\sigma \in {\xi_s},} \cr}} \cr {\matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {{\left({\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}} < \varepsilon {\phi_s},} & {\sigma \in {\xi_s},} \cr}} \cr {\matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\left({\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \right)}^{{1 \over p}}} < \varepsilon ,} & {\sigma \in {\xi_s},} \cr}} \cr {({f_n}) \in {\,_{ru}}{m_\phi}({\cal O},{\nabla_q},p).} \cr} Hence, rumΟ•(π’ͺ, βˆ‡q) βŠ† rumΟ•(π’ͺ, βˆ‡q, p).

Remark 3.11

The class of sequences of functions rumΟ•(π’ͺ, βˆ‡q, p) is not convergence free.

This result follows from the following example.

Example 3.12

Consider an Orlicz function π’ͺ : [0, ∞) β†’ [0, ∞) such that π’ͺ(x) = x, for all x ∈ [0, ∞), Ο•n = n, for all n ∈ β„•, and we take a sequence of functions (fn) defined as follows fn(x)={1n2x,for xβ‰ 0,0,for x=0, {f_n}(x) = \left\{{\matrix{{{1 \over {{n^2}x}},} \hfill & {{\rm{for}}\,x \ne 0,} \hfill \cr {0,} \hfill & {{\rm{for}}\,x = 0,} \hfill \cr}} \right. with respect to the scale function defined as ΞΌ(x)={1x,for xβ‰ 0,0,for x=0. \mu (x) = \left\{{\matrix{{{1 \over x},} \hfill & {{\rm{for}}\,x \ne 0,} \hfill \cr {0,} \hfill & {{\rm{for}}\,x = 0.} \hfill \cr}} \right. Thus, (fn) ∈ rumΟ•(π’ͺ, βˆ‡q, p). Now we consider another sequence of functions such as gn(x)={n/x,for xβ‰ 0,0,for x=0. {g_n}(x) = \left\{{\matrix{{n/x,} \hfill & {{\rm{for}}\,x \ne 0,} \hfill \cr {0,} \hfill & {{\rm{for}}\,x = 0.} \hfill \cr}} \right. But (gn) βˆ‰ rumΟ•(π’ͺ, βˆ‡q, p).

Hence, the class of sequences of functions rumΟ•(π’ͺ, βˆ‡q, p) is not convergence free.

Remark 3.13

The class of sequences of functions rumΟ•(π’ͺ, βˆ‡q, p) is not symmetric.

This result follows from the following example.

Example 3.14

Let Ο•n = n, for all n ∈ β„• and also consider an Orlicz function π’ͺ : [0, ∞) β†’ [0, ∞) such that π’ͺ(x) = x, for all x ∈ [0, ∞). Now we consider the sequence of function (fn) defined by fn(x)={nx,for xβ‰ 0,0,for x=0, {f_n}(x) = \left\{{\matrix{{nx,} \hfill & {{\rm{for}}\,x \ne 0,} \hfill \cr {0,} \hfill & {{\rm{for}}\,x = 0,} \hfill \cr}} \right. then (fn) ∈ rumΟ•(π’ͺ, βˆ‡q, p) with respect to the scale function ΞΌ(x) such that, ΞΌ(x)={x,for xβ‰ 0,0,forΒ x=0. \mu (x) = \left\{{\matrix{{x,} \hfill & {{\rm{for}}\,x \ne 0,} \hfill \cr {0,} \hfill & {{\rm{for}}x = 0.} \hfill \cr}} \right. Now, take the rearrangement (gn) of (fn) defined as follows (gn)=(f1,f3,f5,f7,f2,…). ({g_n}) = ({f_1},{f_3},{f_5},{f_7},{f_2}, \ldots). Then (gn) βˆ‰ rumΟ•(π’ͺ, βˆ‡q, p). Hence, rumΟ•(π’ͺ, βˆ‡q, p) is not symmetric.

Theorem 3.15

The class of sequences of functions rumΟ•(π’ͺ, βˆ‡q, p) is solid.

Proof

Let (fn) ∈ rumΟ•(π’ͺ, βˆ‡q, p). Then supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p<Ξ΅. \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}} < \varepsilon. Let (Ξ»n) be any sequence of scalars with |Ξ»n| ≀ 1, for all n ∈ β„•. Then supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ»nβˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p                    ≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ|Ξ»n|p(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p                     ≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p<Ξ΅. \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\lambda_n}{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left| {{\lambda_n}} \right|}^p}{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}} < \varepsilon.} \hfill \cr}

Theorem 3.16

ruβ„“1(π’ͺ, βˆ‡q) βŠ† rumΟ•(π’ͺ, βˆ‡q) βŠ† ruβ„“βˆž(π’ͺ, βˆ‡q).

Proof

Let (fn) ∈ ruβ„“1(π’ͺ, βˆ‡q). Then we have βˆ‘n=1∞O(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|,for all ν>0. \matrix{{\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right) < \varepsilon \left| {\mu (x)} \right|,}} & {{\rm{for}}\,{\rm{all}}\,\nu > 0.} \cr} Since (Ο•n) is monotonically increasing, so we have 1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½)≀1Ο•1βˆ‘n=1∞O(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|. {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right)} \le {1 \over {{\phi_1}}}\sum\limits_{n = 1}^\infty {{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right)} < \varepsilon \left| {\mu (x)} \right|. Hence, supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|. \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right)} < \varepsilon \left| {\mu (x)} \right|. Thus, (fn) ∈ rumΟ•(π’ͺ, βˆ‡q). Therefore, ruβ„“1(π’ͺ, βˆ‡q) βŠ† rumΟ•(π’ͺ, βˆ‡q).

Let (fn) ∈ rumΟ•(π’ͺ, βˆ‡q). Then we have supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½)<Ξ΅|ΞΌ(x)|,for some ν>0 \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right)} < \varepsilon \left| {\mu (x)} \right|,} & {{\rm{for}}\,{\rm{some}}\,\nu > 0} \cr} (on taking cardinally of Οƒ to be 1). Therefore, (fn) ∈ ruβ„“βˆž(π’ͺ, βˆ‡q) and thus, rumΟ•(π’ͺ, βˆ‡q) βŠ† ruβ„“βˆž(π’ͺ, βˆ‡q).

4.
Geometric properties

We introduced the space rumΟ•(O,βˆ‡q)={(fn)βˆˆΟ‰f:ΞΆ(Ξ»fn)<Ρ for some λ>0}, _{ru}{m_\phi}({\cal O},{\nabla_q}) = \{({f_n}) \in {\omega_f}:\zeta (\lambda {f_n}) < \varepsilon \,{\rm{for}}\,{\rm{some}}\,\lambda > 0\}, where ΞΆ(fn(x))=supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)p, \zeta ({f_n}(x)) = \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{\sum\limits_{n \in \sigma} {\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)}^p}, βˆ‡qfn(x) = fn(x) βˆ’ qfnβˆ’1(x) and p > 0. It is equipped with the norm defined by β€–fnβ€–rumΟ•(O,βˆ‡q)=inf{Ξ½>0:supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|)p≀1}. {\left\| {{f_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q})}} = \inf \left\{{\nu > 0:\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\nabla_q}{f_n}\left(x \right)} \right|} \over {\nu \left| {\mu \left(x \right)} \right|}}} \right)}^p}} \le 1} \right\}.

Theorem 4.1

The space rumΟ•(π’ͺ, βˆ‡q, p) is a convex modular space with the modular ΞΆ(fn)=supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p. \zeta ({f_n}) = \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}.}

Proof

  • (1)

    Clearly, ΞΆ(fn) = 0, if and only if fn=ΞΈΒ― {f_n} = \bar \theta , where ΞΈΒ― \bar \theta represents the null sequence of functions.

  • (2)

    Now for any scalar Ξ± with |Ξ±| = 1, ΞΆ(Ξ±fn)=supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ±βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p=|Ξ±|psupsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p=supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p=ΞΆ(fn). \matrix{{\zeta (\alpha {f_n})} \hfill & {= \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {\alpha {\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {= |\alpha {|^p}\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {=\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {= \zeta ({f_n}).} \hfill \cr}

  • (3)

    Let (fn) and (gn) be in rumΟ•(π’ͺ, βˆ‡q, p) and Ξ±, Ξ² β‰₯ 0 with Ξ± + Ξ² = 1. To prove the convexity of the function note that ΞΆ(Ξ±fn+Ξ²gn)=supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|Ξ±βˆ‡qfn(x)+Ξ²βˆ‡qgn(x)|Ξ½|ΞΌ(x)|))p≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ|Ξ±|p(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ|Ξ²|p(O(|βˆ‡qgn(x)|Ξ½|ΞΌ(x)|))p≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qfn(x)|Ξ½|ΞΌ(x)|))p+supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒ(O(|βˆ‡qgn(x)|Ξ½|ΞΌ(x)|))p=ΞΆ(fn)+ΞΆ(gn). \matrix{{\zeta (\alpha {f_n} + \beta {g_n})} \hfill & {= \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{\left| {\alpha {\nabla_q}{f_n}(x) + \beta {\nabla_q}{g_n}(x)} \right|} \over {\nu \left| {\mu (x)} \right|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {\le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left| \alpha \right|}^p}{{\left({{\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over {\nu |\mu (x)|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {+ \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left| \beta \right|}^p}{{\left({{\cal O}\left({{{|{\nabla_q}{g_n}(x)|} \over {\nu |\mu (x)|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {\le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{|{\nabla_q}{f_n}(x)|} \over {\nu |\mu (x)|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {+ \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{{\left({{\cal O}\left({{{|{\nabla_q}{g_n}(x)|} \over {\nu |\mu (x)|}}} \right)} \right)}^p}}} \hfill \cr {} \hfill & {= \zeta ({f_n}) + \zeta ({g_n}).} \hfill \cr} Hence, rumΟ•(π’ͺ, βˆ‡q, p) is a modular space. Also, it can be proven that ΞΆ(Ξ±fn + Ξ²gn) ≀ Ξ±ΞΆ(fn) + Ξ²ΞΆ(gn), for Ξ±, Ξ² > 0 and Ξ± + Ξ² = 1. Thus, rumΟ•(π’ͺ, βˆ‡q, p) is a convex modular space.

Theorem 4.2

The space rumΟ•(π’ͺ, βˆ‡q, p) is uniform convex.

Proof

Fix 0 < Ι› ≀ 2. Let us consider two sequences (fn), (gn) of functions from the Banach space rumΟ•(π’ͺ, βˆ‡q) and assume that (4.1) β€–fnβ€–rumΟ•(O,βˆ‡q,p) =β€–gnβ€–rumΟ•(O,βˆ‡q,p) =1,β€–fnβˆ’gnβ€–rumΟ•(O,βˆ‡q,p) β‰₯Ξ΅. \matrix{{{{\left\| {{f_n}} \right\|}_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}}\, = {{\left\| {{g_n}} \right\|}_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}}\, = 1,} & {{{\left\| {{f_n} - {g_n}} \right\|}_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}}\, \ge \varepsilon.} \cr} Note that β€–fn+gnβ€–rumΟ•(O,βˆ‡q,p)2+β€–fnβˆ’gnβ€–rumΟ•(O,βˆ‡q,p)2=2(β€–fnβ€–rumΟ•(O,βˆ‡q,p)2+β€–gnβ€–rumΟ•(O,βˆ‡q,p)2), \left\| {{f_n} + {g_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}^2 + \left\| {{f_n} - {g_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}^2 = 2(\left\| {{f_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}^2 + \left\| {{g_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}^2), and from (4.1) we get β€–fn+gnβ€–rumΟ•(O,βˆ‡q,p)2=4βˆ’β€–fnβˆ’gnβ€–rumΟ•(O,βˆ‡q,p)2≀4βˆ’Ξ΅2. \matrix{{\left\| {{f_n} + {g_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}^2 = 4 - \left\| {{f_n} - {g_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}^2} \cr {\le 4 - {\varepsilon^2}.} \cr} Consequently, 12β€–fn+gnβ€–rumΟ•(O,βˆ‡q,p)≀1βˆ’Ξ΅24. {1 \over 2}{\left\| {{f_n} + {g_n}} \right\|_{_{ru}{m_\phi }({\cal O},{\nabla _q},p)}} \le \sqrt {1 - {{{\varepsilon ^2}} \over 4}}. So, there corresponds a Ο‘(Ι›) > 0 such that 12β€–fn+gnβ€–rumΟ•(O,βˆ‡q,p)≀1βˆ’Ο‘(Ξ΅). {1 \over 2}{\left\| {{f_n} + {g_n}} \right\|_{_{ru}{m_\phi}\left({{\cal O},{\nabla_q},p} \right)}} \le 1 - \vartheta (\varepsilon). Hence, the space rumΟ•(π’ͺ, βˆ‡q, p) is uniform convex.

Theorem 4.3

The space rumΟ•(π’ͺ, βˆ‡q, p) is convex.

Proof

Let (fn), (gn) ∈ rumΟ•(π’ͺ, βˆ‡q, p). By the definition we have supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½1)p<Ξ΅1|ΞΌ1(x)|,for some ν1>0, \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {{\nu_1}}}} \right)}^p}} < {\varepsilon_1}\left| {{\mu_1}(x)} \right|,} & {{\rm{for}}\,{\rm{some}}\,{\nu_1} > 0} \cr}, and supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qgn(x)|Ξ½2)p<Ξ΅2|ΞΌ2(x)|,for some ν2>0, \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}{{\sum\limits_{n \in \sigma} {{\cal O}\left({{{\left| {{\nabla_q}{g_n}(x)} \right|} \over {{\nu_2}}}} \right)}}^p} < {\varepsilon_2}\left| {{\mu_2}(x)} \right|,} & {{\rm{for}}\,{\rm{some}}\,{\nu_2} > 0} \cr}, Take Ξ½ = max{|Ξ»1|Ξ½1, |Ξ»2|Ξ½2}, where Ξ»1, Ξ»2 > 0, Ξ»1 + Ξ»2 = 1. Since Ξ»1, Ξ»2, Ξ½1, Ξ½2 > 0, then |Ξ»1|Ξ½1 > 0, |Ξ»2|Ξ½2 > 0. Now, supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|Ξ»1βˆ‡qfn(x)+Ξ»2βˆ‡qgn(x)|Ξ½)p                     =supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|Ξ»1βˆ‡qfn(x)+(1βˆ’Ξ»1)βˆ‡qgn(x)|Ξ½)p                     ≀supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|Ξ»1βˆ‡qfn(x)|Ξ½)p                       +supsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|(1βˆ’Ξ»1)βˆ‡qgn(x)|Ξ½)p                     ≀|Ξ»1|psupsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½1)p                         +|1βˆ’Ξ»1|psupsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qgn(x)|Ξ½2)p                     ≀|Ξ»1|psupsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qfn(x)|Ξ½1)p                         +|1βˆ’Ξ»1|psupsβ‰₯1,ΟƒβˆˆΞΎs,x∈D1Ο•sβˆ‘nβˆˆΟƒO(|βˆ‡qgn(x)|Ξ½2)p                     ≀|Ξ»1|pΞ΅1|ΞΌ1(x)|+(1+|Ξ»1|p)Ξ΅2|ΞΌ2(x)|                     ≀|Ξ»1|p(Ξ΅1|ΞΌ1(x)|+Ξ΅2|ΞΌ2|)+Ξ΅2|ΞΌ2(x)|                     ≀Ρ|ΞΌ(x)|, \matrix{{\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\lambda_1}{\nabla_q}{f_n}(x) + {\lambda_2}{\nabla_q}{g_n}(x)} \right|} \over \nu}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\lambda_1}{\nabla_q}{f_n}(x) + (1 - {\lambda_1}){\nabla_q}{g_n}(x)} \right|} \over \nu}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\lambda_1}{\nabla_q}{f_n}(x)} \right|} \over \nu}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {(1 - {\lambda_1}){\nabla_q}{g_n}(x)} \right|} \over \nu}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le |{\lambda_1}{|^p}\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {{\nu_1}}}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + |1 - {\lambda_1}{|^p}\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\nabla_q}{g_n}(x)} \right|} \over {{\nu_2}}}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le |{\lambda_1}{|^p}\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\nabla_q}{f_n}(x)} \right|} \over {{\nu_1}}}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + |1 - {\lambda_1}{|^p}\mathop {\sup}\limits_{s \ge 1,\sigma \in {\xi_s},x \in D} {1 \over {{\phi_s}}}\sum\limits_{n \in \sigma} {{\cal O}{{\left({{{\left| {{\nabla_q}{g_n}(x)} \right|} \over {{\nu_2}}}} \right)}^p}}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le |{\lambda_1}{|^p}{\varepsilon_1}\left| {{\mu_1}(x)} \right| + (1 + |{\lambda_1}{|^p}){\varepsilon_2}\left| {{\mu_2}(x)} \right|} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le |{\lambda_1}{|^p}({\varepsilon_1}\left| {{\mu_1}(x)} \right| + {\varepsilon_2}\left| {{\mu_2}} \right|) + {\varepsilon_2}\left| {{\mu_2}(x)} \right|} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \varepsilon \left| {\mu (x)} \right|,} \hfill \cr} where ΞΌ(x)=|Ξ»1|p(Ξ΅1|ΞΌ1(x)|+Ξ΅2|ΞΌ2|)+Ξ΅2|ΞΌ2(x)|. \mu (x) = |{\lambda_1}{|^p}({\varepsilon_1}\left| {{\mu_1}(x)} \right| + {\varepsilon_2}\left| {{\mu_2}} \right|) + {\varepsilon_2}\left| {{\mu_2}(x)} \right|.

Theorem 4.4

The space rumΟ•(π’ͺ, βˆ‡q, p) is absolutely convex.

Proof

Let 0 < r < 1. V = {f = (fn) ∈ Ο‰f : βˆ₯fβˆ₯rumΟ•(π’ͺ,βˆ‡q,p) ≀ r} is absolutely convex because if (fn), (gn) ∈ V and |Ξ»1| + |Ξ»2| ≀ 1, then β€–Ξ»1fn+Ξ»2gnβ€–rumΟ•(O,βˆ‡q,p)≀(|Ξ»1|+|Ξ»2|)r≀r. {\left\| {{\lambda_1}{f_n} + {\lambda_2}{g_n}} \right\|_{_{ru}{m_\phi}({\cal O},{\nabla_q},p)}} \le (\left| {{\lambda_1}\left| + \right|{\lambda_2}} \right|)r \le r.

In view of Theorem 4.4, we formulate the following without proof.

Corollary 4.5

The space rumΟ•(π’ͺ, βˆ‡q, p) is balanced.

DOI:Β https://doi.org/10.2478/amsil-2024-0026 | Journal eISSN:Β 2391-4238 | Journal ISSN:Β 0860-2107
Language:Β English
Page range:Β 248 - 268
Submitted on:Β Mar 1, 2024
Accepted on:Β Dec 5, 2024
Published on:Β Jan 8, 2025
Published by:Β University of Silesia in Katowice, Institute of Mathematics
In partnership with:Β Paradigm Publishing Services
Publication frequency:Β 2 issues per year
Keywords:

Β© 2025 Diksha Debbarma, Binod Chandra Tripathy, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.