Have a personal or library account? Click to login
Functional Equations with an Anti-Endomorphism for Functions with Multidimensional Codomains Cover

Functional Equations with an Anti-Endomorphism for Functions with Multidimensional Codomains

Open Access
|Dec 2024

References

  1. J. d’Alembert, Addition au Mémoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin 1750 (1750), 355–360.
  2. M. Ayoubi and D. Zeglami, D’Alembert’s functional equations on monoids with an anti-endomorphism, Results Math. 75 (2020), no. 2, Paper No. 74, 12 pp.
  3. M. Ayoubi and D. Zeglami, A variant of d’Alembert’s functional equation on semi-groups with an anti-endomorphism, Aequationes Math. 96 (2022), no. 3, 549–565.
  4. M. Ayoubi and D. Zeglami, D’Alembert µ-functions on semigroups, Arch. Math. (Basel) 118 (2022), no. 3, 239–245.
  5. M. Ayoubi and D. Zeglami, D’Alembert’s µ-matrix functional equation on groups with an anti-endomorphism, Mediterr. J. Math. 19 (2022), no. 5, Paper No. 219, 13 pp.
  6. M. Ayoubi, D. Zeglami, and A. Mouzoun, D’Alembert’s functional equation on monoids with both an endomorphism and an anti-endomorphism, Publ. Math. Debrecen 99 (2021), no. 3–4, 413–429.
  7. T.M.K. Davison, D’Alembert’s functional equation on topological monoids, Publ. Math. Debrecen 75 (2009), no. 1–2, 41–66.
  8. B. Ebanks and H. Stetkær, D’Alembert’s other functional equation, Publ. Math. Debrecen 87 (2015), no. 3–4, 319–349.
  9. Pl. Kannappan, The functional equation f(xy) + f(xy−1) = 2f(x)f(y) for groups, Proc. Amer. Math. Soc. 19 (1968), 69–74.
  10. A. Ouhabi, D. Zeglami, and M. Ayoubi, Quaternion-valued d’Alembert functions on semigroups, Bol. Soc. Mat. Mex. (3) 30 (2024), no. 2, Paper No. 66, 13 pp.
  11. A. Ouhabi, D. Zeglami, and M. Ayoubi, Quaternion-valued multiplicative function on semigroups, Aequationes Math. (2024). DOI: 10.1007/s00010-024-01040-w
  12. H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co., Singapore, 2013.
  13. H. Stetkær, A note on Wilson’s functional equation, Aequationes Math. 91 (2017), no. 5, 945–947.
  14. H. Stetkær, The small dimension lemma and d’Alembert’s equation on semigroups, Aequationes Math. 95 (2021), no. 2, 281–299.
  15. D. Yang, Functional equations and Fourier analysis, Canad. Math. Bull. 56 (2013), no. 1, 218–224.
DOI: https://doi.org/10.2478/amsil-2024-0025 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Submitted on: May 18, 2024
Accepted on: Nov 20, 2024
Published on: Dec 25, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Ayoub Ouhabi, Driss Zeglami, Mohamed Ayoubi, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT