Have a personal or library account? Click to login
Functional Equations with an Anti-Endomorphism for Functions with Multidimensional Codomains Cover

Functional Equations with an Anti-Endomorphism for Functions with Multidimensional Codomains

Open Access
|Dec 2024

Full Article

1.
Introduction

Throughout this paper let S denote a semigroup and M a monoid (a semigroup with a neutral element), and let Y ∈ {M, S}. The map ψ: YY denotes an anti-endomorphism of S (i.e., ψ(xy) = ψ(y)ψ(x) for all x, yY). By ψ2, we mean ψψ. Let f be a function on Y. We say that f is ψ-invariant if fψ = f. The function μ: Y → ℂ is multiplicative, if μ(xy) = μ(x)μ(y) for all x, yY. ℍ is the skew field of quaternions.

D’Alembert’s classic functional equation (1.1) g(x+y)+g(x-y)=2g(x)g(y),x,y,𝕉, g\left( {x + y} \right) + g\left( {x - y} \right) = 2g\left( x \right)g\left( y \right),\,\,\,\,\,\,\,\,\,x,\,y,\, \in {\mathbb {R}}, for functions g : ℝ → ℂ has it roots back in d’Alembert’s investigations of vibrating strings [1] from 1750. Kannappan [9] solved the equation (1.1) on abelian groups. His work was extended to general groups, even monoids or semigroups (where inversion is replaced by an involution), by Davison [7], Stetkær [12, 13, 14], Yang [15], and others.

The subject of functional equations with an anti-endomorphism has been introduced since 2020 by Ayoubi and Zeglami in [2] where they characterized the solutions of the functional equation (1.2) d(xy)+d(xψ(y))=2d(x)d(y),x,yM, d\left( {xy} \right) + d\left( {x\psi \left( y \right)} \right) = 2d\left( x \right)d\left( y \right),\,\,\,\,\,\,\,\,\,x,\,y \in M, in which d: M → ℂ is the unknown function. Later, inspired by Stetkær’s paper [14], they [4] solved (1.2) in the setting of semigroups. Furthermore, Ayoubi, Zeglami and Mouzoun proved in [6] that the solutions of the equation (1.3) g(xy)-g(xψ(y))=2g(x)g(y),x,yM, g\left( {xy} \right) - g\left( {x\psi \left( y \right)} \right) = 2g\left( x \right)g\left( y \right),\,\,\,\,\,\,\,x,\,y \in M, are the functions g=12μ g = {1 \over 2}\mu , where μ: M →ℂ is a multiplicative function satisfying μψ = 0.

The purposes of the present is to generalize each of the two equations (1.3) and (1.2) at the level of the range set of its unknown functions for the first one and its codomain for the second. Precisely

  • 1)

    We determine the general solution of the functional equation (1.4) g(xy)-g(xψ(y))=2g(x)g(y),x,yS, g\left( {xy} \right) - g\left( {x\psi \left( y \right)} \right) = 2g\left( x \right)g\left( y \right),\,\,\,\,\,\,\,x,\,y \in S, where g : S → ℂ is the unknown function. When ψ is involutive, Stetkær [12, Exercise 9.9] showed that g = 0 is the only complex-valued solution of the functional equation (1.4). Another contribution in this direction is the paper by Ebanks and Stetkær [8] where they solved the functional equation f(xy)-f(y-1x)=g(x)h(y), x, yG, f\left( {xy} \right) - f\left( {y^{ - 1} x} \right) = g\left( x \right)h\left( y \right),\,\,\,\,\,\,\,\;x,\;y \in G, in which f, g, h: G → ℂ are the unknown functions and G is a group.

  • 2)

    We solve the functional equation (1.5) g(xy)+g(xψ(y))=2g(x)g(y), g\left( {xy} \right) + g\left( {x\psi \left( y \right)} \right) = 2g\left( x \right)g\left( y \right), where g : M → ℍ is the unknown function. Remark 3.3 gives an example showing that non-central solutions of (1.5) exist. This is in contrast to the earlier resul about its complex-valued solutions which are all central. Example 3.4 illustrates the structure of the solutions of d’Alembert equation (1.5) for quaternion-valued functions on the (ax + b)-group.

2.
Solutions of the equation g(xy) − g((y)) = 2g(x)g(y)

The following theorem gives the general form of the solutions of the functional equation (1.4).

Theorem 2.1

g : S → ℂ is a solution of (1.4) if and only if it has the form g=m2, g = {m \over 2}, where m: S → ℂ is a multiplicative function satisfying mψ = 0.

Proof

The result is true for g = 0. Let g : S → ℂ be a non-zero solution of (1.4) and let x0S be such that g(x0) ≠ 0. Let T(g) be the set of non-zero functions f : S → ℂ that satisfy the functional equation (2.1) f(xy)-f(xψ(y))=2f(x)g(y),x,yS, f\left( {xy} \right) - f\left( {x\psi \left( y \right)} \right) = 2f\left( x \right)g\left( y \right),\,\,\,\,\,x,\,y \in S, and fψ = f. We examine two cases: T(g) is empty or not.

Case 1: We start with the case where T(g) is empty. Let x, yS be arbitrary, we define the function h: S → ℂ as follows h(a):=g(y)g(xa)-g(x)g(ya),aS. h\left( a \right): = g\left( y \right)g\left( {xa} \right) - g\left( x \right)g\left( {ya} \right),\,\,\,\,\,\,\,\,a \in S. Using the fact that g satisfies (1.4) and the definition of h, we will show that h satisfies the equation (2.1) and that hψ = h. For any a, bS we have h(ab)-h(aψ(b))=g(y)g(xab)-g(x)g(yab)-g(y)g(xaψ(b))+g(x)g(yaψ(b))=g(y)(g(xab)-g(xaψ(b)))-g(x)(g(yab)-g(yaψ(b)))=2g(y)g(xa)g(b)-2g(x)g(ya)g(b)=2(g(y)g(xa)-g(x)g(ya))g(b)=2h(a)g(b). \matrix{ {h\left( {ab} \right) - h\left( {a\psi \left( b \right)} \right)} \hfill & { = g\left( y \right)g\left( {xab} \right) - g\left( x \right)g\left( {yab} \right) - g\left( y \right)g\left( {xa\psi \left( b \right)} \right) + g\left( x \right)g\left( {ya\psi \left( b \right)} \right)} \hfill \cr {} \hfill & { = g\left( y \right)\left( {g\left( {xab} \right) - g\left( {xa\psi \left( b \right)} \right)} \right) - g\left( x \right)\left( {g\left( {yab} \right) - g\left( {ya\psi \left( b \right)} \right)} \right)} \hfill \cr {} \hfill & { = 2g\left( y \right)g\left( {xa} \right)g\left( b \right) - 2g\left( x \right)g\left( {ya} \right)g\left( b \right)} \hfill \cr {} \hfill & { = 2\left( {g\left( y \right)g\left( {xa} \right) - g\left( x \right)g\left( {ya} \right)} \right)g\left( b \right) = 2h\left( a \right)g\left( b \right).} \hfill \cr } Then h satisfies the equation (2.1). For any aS we have h(ψ(a))=g(y)g(xψ(a))-g(x)g(yψ(a))=g(y)(g(xa)-2g(x)g(a))-g(x)(g(ya)-2g(y)g(a))=g(y)g(xa)-2g(y)g(x)g(a)-g(x)g(ya)+2g(x)g(y)g(a)=g(y)g(xa)-g(x)g(ya)=h(a), \matrix{ {h\left( {\psi \left( a \right)} \right)} \hfill & { = g\left( y \right)g\left( {x\psi \left( a \right)} \right) - g\left( x \right)g\left( {y\psi \left( a \right)} \right)} \hfill \cr {} \hfill & { = g\left( y \right)\left( {g\left( {xa} \right) - 2g\left( x \right)g\left( a \right)} \right) - g\left( x \right)\left( {g\left( {ya} \right) - 2g\left( y \right)g\left( a \right)} \right)} \hfill \cr {} \hfill & { = g\left( y \right)g\left( {xa} \right) - 2g\left( y \right)g\left( x \right)g\left( a \right) - g\left( x \right)g\left( {ya} \right) + 2g\left( x \right)g\left( y \right)g\left( a \right)} \hfill \cr {} \hfill & { = g\left( y \right)g\left( {xa} \right) - g\left( x \right)g\left( {ya} \right) = h\left( a \right),} \hfill \cr } which means that hψ = h. So h = 0 because T(g) is empty. From the definition of h, we find that g(y)g(xa) = g(x)g(ya) for all a, x, yS. Let m(a):=g(x0a)g(x0) m\left( a \right)\,: = {{g\left( {x_0 a} \right)} \over {g\left( {x_0 } \right)}} , aS. Then (2.2) g(xa)=g(x)m(a),a,xS, g\left( {xa} \right) = g\left( x \right)m\left( a \right),\,\,\,\,a,\,x \in S, from which we get that g(x0)m(ab)=g(x0ab)=g(x0a)m(b)=g(x0)m(a)m(b), g\left( {x_0 } \right)m\left( {ab} \right) = g\left( {x_0 ab} \right) = g\left( {x_0 a} \right)m\left( b \right) = g\left( {x_0 } \right)m\left( a \right)m\left( b \right), for all a, bS. It follows that m is multiplicative. From (1.4) and (2.2) we get g(x0)(m(a)-m(ψ(a)))=g(x0)m(a)-g(x0)m(ψ(a))=g(x0a)-g(x0ψ(a))=2g(x0)g(a) ,aS, \matrix{ {g\left( {x_0 } \right)\left( {m\left( a \right) - m\left( {\psi \left( a \right)} \right)} \right)} \hfill & { = g\left( {x_0 } \right)m\left( a \right) - g\left( {x_0 } \right)m\left( {\psi \left( a \right)} \right)} \hfill \cr {} \hfill & { = g\left( {x_0 a} \right) - g\left( {x_0 \psi \left( a \right)} \right) = 2g\left( {x_0 } \right)g\left( a \right)\;,\,\,\,\,\,\,\,\,\;a \in S,} \hfill \cr } which implies that (2.3) g=m-mψ2. g = {{m - m \circ \psi } \over 2}.

Note that mmψ because g ≠ 0. Substituting (2.3) into (1.4) we obtain m(xy)-mψ(xy)2-m(xψ(y))-mψ(xψ(y))2=2(m(x)-mψ(x)2)(m(y)-mψ(y)2) , x, yS. \eqalign{ & {{m\left( {xy} \right) - m \circ \psi \left( {xy} \right)} \over 2} - {{m\left( {x\psi \left( y \right)} \right) - m \circ \psi \left( {x\psi \left( y \right)} \right)} \over 2} \cr & \,\, = 2\left( {{{m\left( x \right) - m \circ \psi \left( x \right)} \over 2}} \right)\left( {{{m\left( y \right) - m \circ \psi \left( y \right)} \over 2}} \right)\;, & \;x,\;y \in S. \cr} Then, after some reductions, we find mψ(x)(m(y)+mψ2(y)-2mψ(y))=0, m \circ \psi \left( x \right)\left( {m\left( y \right) + m \circ \psi ^2 \left( y \right) - 2m \circ \psi \left( y \right)} \right) = 0, for all x, yS. Since mmψ, it follows from [12, Corollary 3.19] that m + mψ2 ≠ 2mψ and hence mψ = 0 and g=m2 g = {m \over 2} .

Case 2: T(g) is not empty. Here there is a function l which belongs to T(g). This says that l : S → ℂ satisfies (2.4) l(xy)-l(xψ(y))=2l(x)g(y),x,yS, \matrix{ {l\left( {xy} \right) - l\left( {x\psi \left( y \right)} \right) = 2l\left( x \right)g\left( y \right),} & {x,\,y \in S,} \cr } l ≠ 0 and lψ = l. Using that lψ = l = lψ2 we compute with (2.4) as follows 2l(x)g(ψ2(y))=2l(ψ2(x))g(ψ2(y))=l(ψ2(x)ψ2(y))-l(ψ2(x)ψ(ψ2(y)))=l(ψ2(xy))-l(ψ2(xψ(y)))=l(xy)-l(xψ(y))=2l(x)g(y), x, yS. \matrix{ {2l\left( x \right)g\left( {\psi ^2 \left( y \right)} \right)} \hfill & { = 2l\left( {\psi ^2 \left( x \right)} \right)g\left( {\psi ^2 \left( y \right)} \right) = l\left( {\psi ^2 \left( x \right)\psi ^2 \left( y \right)} \right) - l\left( {\psi ^2 \left( x \right)\psi \left( {\psi ^2 \left( y \right)} \right)} \right)} \hfill \cr {} \hfill & { = l\left( {\psi ^2 \left( {xy} \right)} \right) - l\left( {\psi ^2 \left( {x\psi \left( y \right)} \right)} \right) = l\left( {xy} \right) - l\left( {x\psi \left( y \right)} \right)} \hfill \cr {} \hfill & { = 2l\left( x \right)g\left( y \right), \;\;\;\;\;x,\;y \in S.} \hfill \cr } Since l ≠ 0 we find that gψ2 = g. Again the equation (2.4) together with lψ = l tell us that (2.5) l(ψ(x)y)-l(yx)=l(ψ(x)y)-l(ψ(x)ψ(y))=2l(ψ(x))g(y)=2l(x)g(y),x,yS, \matrix{ {l\left( {\psi \left( x \right)y} \right) - l\left( {yx} \right)} \hfill & { = l\left( {\psi \left( x \right)y} \right) - l\left( {\psi \left( x \right)\psi \left( y \right)} \right) = 2l\left( {\psi \left( x \right)} \right)g\left( y \right)} \hfill \cr {} \hfill & { = 2l\left( x \right)g\left( y \right),\,\,\,\,\,x,\,y \in S,} \hfill \cr } and (2.6) l(yx)-l(ψ(y)x)=l(ψ(x)ψ(y))-l(ψ(x)ψ2(y))=2l(ψ(x))g(ψ(y))=2l(x)gψ(y),x,yS. \matrix{ {l\left( {yx} \right) - l\left( {\psi \left( y \right)x} \right)} \hfill & { = l\left( {\psi \left( x \right)\psi \left( y \right)} \right) - l\left( {\psi \left( x \right)\psi ^2 \left( y \right)} \right) = 2l\left( {\psi \left( x \right)} \right)g\left( {\psi \left( y \right)} \right)} \hfill \cr {} \hfill & { = 2l\left( x \right)g \circ \psi \left( y \right),\,\,\,\,\,\,\,\,x,\,y \in S.} \hfill \cr } Summing (2.5) and (2.6) gives us l(ψ(x)y)-l(ψ(y)x)=2l(x)(g(y)+gψ(y)),x, yS. l\left( {\psi \left( x \right)y} \right) - l\left( {\psi \left( y \right)x} \right) = 2l\left( x \right)\left( {g\left( y \right) + g \circ \psi \left( y \right)} \right),\,\,\,\,\,x,\;y \in S. From this we get l(x)(g(y)+gψ(y)) = −l(y)(g(x)+gψ(x)) for all x, yS. From [12, Exercise 1.1(b)] we read that g + gψ = 0 because l ≠ 0. Hence g = −gψ. Using this and (1.4) we find that g(ψ2(x)y)=2g(ψ2(x))g(y)+g(ψ2(x)ψ(y))=-2g(ψ2(x))g(ψ(y))+g(ψ2(x)ψ(y))=g(ψ2(x)ψ2(y))=g(ψ2(xy))=g(xy), x, yS. \matrix{ {g\left( {\psi ^2 \left( x \right)y} \right)} \hfill & { = 2g\left( {\psi ^2 \left( x \right)} \right)g\left( y \right) + g\left( {\psi ^2 \left( x \right)\psi \left( y \right)} \right)} \hfill \cr {} \hfill & { = - 2g\left( {\psi ^2 \left( x \right)} \right)g\left( {\psi \left( y \right)} \right) + g\left( {\psi ^2 \left( x \right)\psi \left( y \right)} \right)} \hfill \cr {} \hfill & { = g\left( {\psi ^2 \left( x \right)\psi ^2 \left( y \right)} \right) = g\left( {\psi ^2 \left( {xy} \right)} \right) = g\left( {xy} \right),\,\,\,\,\,\,\,\;x,\;y \in S.} \hfill \cr } We follow the same procedure as in [12, Exercise 9.9] to obtain g = 0.

Remark 2.2

Theorem 2.1 holds true if we replace ℂ by a field 𝕂 and 2 by a constant c ∈ 𝕂.

3.
Quaternion-valued solutions of d’Alembert’s equation

The following theorem determines the solutions of the functional equation (1.5). In the rest of this section, we denote the neutral element of M by e.

Theorem 3.1

The solutions g : M → ℍ of the functional equation (1.5) are the following:

  • (1)

    There exists a multiplicative function μ: M → ℍ with μψ = 0 such that g=μ2. g = {\mu \over 2}.

  • (2)

    There exists a solution d: M → ℂ of (1.2) with g(e) = 1 such that g= Re (d)+ Im (d)i. g = {\rm{Re}}\left( d \right) + {\rm{Im}}\left( d \right){\bf{i}}.

  • (3)

    There exist a solution d: M → ℂ of (1.2) with g(e) = 1 and Im(d) ≠ 0, β ∈ ℝ, and θ ∈ ℝ such that g= Re (d)+β-1ββ+1β Im (d)i-2 sin (θ)β+1β Im (d)j+2 cos (θ)β+1β Im (d)k. g = {\rm{Re}}\left( d \right) + {{\beta - {1 \over \beta }} \over {\beta + {1 \over \beta }}}{\rm{Im}}\left( d \right){\bf{i}} - {{2{\rm{sin}}\left( \theta \right)} \over {\beta + {1 \over \beta }}}{\rm{Im}}\left( d \right){\bf{j}} + {{2{\rm{cos}}\left( \theta \right)} \over {\beta + {1 \over \beta }}}{\rm{Im}}\left( d \right){\bf{k}}.

Proof

Let g = q1 + q2 i + q3 j + q4 k: M → ℍ, where q1, q2, q3 and q4 are real-valued functions on M, be a solution of the functional equation (1.5). We will examine two cases, g(e) ≠ 1 or g(e) = 1.

Case 1: g(e) ≠ 1. We follow the same procedure as in the proof of [2, Case 1 of Theorem 3.2] to arrive at the solution in case 1 of our statement.

Case 2: g(e) = 1. We find, like in the proof of [2, Lemma 3.1(i)], that gψ = g. Using this we obtain, like in the proof of [5, Theorem 5.1], that g(x)g(y)=g(y)g(x)forallx,yS. g\left( x \right)g\left( y \right) = g\left( y \right)g\left( x \right)\,\,\,\,\,\,\,\,{\rm{for}}\,{\rm{all}}\,x,\,y \in S. With this property in mind, we prove in the same way as in the proof of [2, Lemma 3.1(ii) and (iii)] that g is central and that (3.1) g(xψ2(y)z)=g(xyz)forallx,y,zM. g\left( {x\psi ^2 \left( y \right)z} \right) = g\left( {xyz} \right)\,\,\,\,\,\,\,\,\,{\rm{for}}\,{\rm{all}}\,x,\,y,\,z \in M.

The matrix representation of quaternions reveals that the matrix function (ab-b¯a¯), \left( {\matrix{ a \hfill & b \hfill \cr { - \overline b } \hfill & {\overline a } \hfill \cr } } \right), where a = q1 + q2i, b = q3 + q4i is a solution of the functional equation (1.5). Then the pair (a, b) satisfies the system a(xψ(y))+a(xy)=2a(x)a(y)-2b(x)b¯(y), x, yM,b(xψ(y))+b(xy)=2a(x)b(y)+2b(x)a¯(y), x, yM. \matrix{ {a\left( {x\psi \left( y \right)} \right) + a\left( {xy} \right) = 2a\left( x \right)a\left( y \right) - 2b\left( x \right)\bar b\left( y \right),} \hfill & {\;x,\;y \in M,} \hfill \cr {b\left( {x\psi \left( y \right)} \right) + b\left( {xy} \right) = 2a\left( x \right)b\left( y \right) + 2b\left( x \right)\bar a\left( y \right),} \hfill & {\;x,\;y \in M.} \hfill \cr } <tex-math><![CDATA[

Since g is central, ψ-invariant and satisfies (3.1) then so is each of the functions qi, i ∈ {1, 2, 3, 4} and hence we have aψ = a, bψ = b, a and b are central, and the two equalities a(xψ2(y)z)=a(xyz),b(xψ2(y)z)=b(xyz), \matrix{ {a\left( {x\psi ^2 \left( y \right)z} \right) = a\left( {xyz} \right),} \hfill \cr {b\left( {x\psi ^2 \left( y \right)z} \right) = b\left( {xyz} \right),} \hfill \cr } <tex-math><![CDATA[ for all x, y, zM. We follow the same procedure as in the proof of [10, Theorem 2.3] to arrive at the solution in case 2 or 3.

Remark 3.2.

The central multiplicative functions μ: S → ℍ are described in [11, Theorem 4.1].

Remark 3.3.

[4, Theorem 3.2] tells us that the solutions of the equation (1.2) are central. This property is not true in general for the solutions of the equation (1.5) as the following illustrates: Let M = (ℍ, ・), ψ = 0, and g0 : (ℍ, ・) → ℍ the function defined by g0(q):=12q g_0 \left( q \right)\,: = {1 \over 2}q for all q ∈ ℍ. The function g0 is a solution of the equation (1.5) on (ℍ, ・) and g0(ij) ≠ g0(ji).

Example 3.4.

Let M be the (ax + b)-group from [12, Examples A.17(i)]. Let ψ be the anti-endomorphism defined by (a, b) ↦ (a, 0) for (a, b) ∈ M. Note that μ = 0 for any multiplicative function μ: M → ℍ satisfying μψ = 0. Indeed, if μ: M → ℍ is multiplicative and μψ = 0, then for all (a, b) ∈ M we have μ(a, b)=μ((a, b)×(1,0))=μ((a, b)×ψ(1,0))=μ(a, b)×μψ(1,0)=μ(a, b)×0=0. \matrix{ {\mu \left( {a,\;b} \right)} \hfill & { = \mu \left( {\left( {a,\;b} \right) \times \left( {1,0} \right)} \right) = \mu \left( {\left( {a,\;b} \right) \times \psi \left( {1,0} \right)} \right)} \hfill \cr {} \hfill & { = \mu \left( {a,\;b} \right) \times \mu \circ \psi \left( {1,0} \right) = \mu \left( {a,\;b} \right) \times 0 = 0.} \hfill \cr } From [12, Example 3.13] we read that the continuous characters on the (ax+b)-group are mλ(a, b)=aλ, (a, b)M, m_\lambda \left( {a,\;b} \right) = a^\lambda ,\;\left( {a,\,\;b} \right) \in M, where λ ∈ ℂ. Note that mλψ = mλ. Combining [4, Corollary 3.3] with [3, Proposition 4.1(b)] and [12, Corollary 8.18], we find that the non-zero continuous solutions of (1.2) are the following: dλ(a, b)=mλ(a,b)+mλψ(a,b)2=aλ, (a, b)M, d_\lambda \left( {a,\;b} \right) = {{m_\lambda \left( {a,b} \right) + m_\lambda \circ \psi \left( {a,b} \right)} \over 2} = a^\lambda ,\,\,\,\,\,\,\,\,\,\;\left( {a,\;b} \right) \in M, where λ ∈ ℂ. Let λ = λ1 + λ2 i with λ1, λ2 ∈ ℝ, then  Re (aλ)=aλ1 cos (λ2 ln (a))and Im (aλ)=aλ1 sin (λ2 ln (a)). {\rm{Re}}\left( {a^\lambda } \right) = a^{\lambda _1 } {\rm{cos}}\left( {\lambda _2 {\rm{ln}}\left( a \right)} \right)\,{\rm{and\,Im}}\left( {a^\lambda } \right) = a^{\lambda _1 } {\rm{sin}}\left( {\lambda _2 {\rm{ln}}\left( a \right)} \right). From Theorem 3.1 we conclude that the non-zero continuous solutions of (1.5) are the following:

  • (1)

    There exist λ1, λ2 ∈ ℝ such that g(a, b)=Re(d(a, b))+ Im (d(a, b))i=aλ1 cos (λ2 ln (a))+aλ1 sin (λ2 ln (a))i, \matrix{ {g\left( {a,\;b} \right)} \hfill & { = {\mathop{\rm Re}\nolimits} \left( {d\left( {a,\,\;b} \right)} \right) + {\rm{}}{\mathop{\rm Im}\nolimits} {\rm{}}\left( {d\left( {a,\;b} \right)} \right){\bf{i}}} \hfill \cr {} \hfill & { = a^{\lambda _1 } {\rm{}}\cos {\rm{}}\left( {\lambda _2 {\rm{}}\ln \;\left( a \right)} \right) + a^{\lambda _1 } {\rm{}}\sin {\rm{}}\left( {\lambda _2 {\rm{}}\ln {\rm{}}\left( a \right)} \right){\bf{i}},} \hfill \cr } for all (a, b) ∈ M.

  • (2)

    There exist λ1, θ ∈ ℝ and λ2, β ∈ ℝ such that g(a, b)=aλ1 cos (λ2 ln (a))+β-1ββ+1βaλ1 sin (λ2 ln (a))i-2 sin (θ)β+1βaλ1 sin (λ2 ln (a))j+2 cos (θ)β+1βaλ1 sin (λ2 ln (a))k, \eqalign{ & g\left( {a,\;b} \right) = a^{\lambda _1 } {\rm{cos}}\left( {\lambda _2 {\rm{ln}}\left( a \right)} \right) + {{\beta - {1 \over \beta }} \over {\beta + {1 \over \beta }}}a^{\lambda _1 } {\rm{sin}}\left( {\lambda _2 {\rm{ln}}\left( a \right)} \right){\bf{i}} \cr & \,\,\,\, - {{2{\rm{sin}}\left( \theta \right)} \over {\beta + {1 \over \beta }}}a^{\lambda _1 } {\rm{sin}}\left( {\lambda _2 {\rm{ln}}\left( a \right)} \right){\bf{j}} + {{2{\rm{cos}}\left( \theta \right)} \over {\beta + {1 \over \beta }}}a^{\lambda _1 } {\rm{sin}}\left( {\lambda _2 {\rm{ln}}\left( a \right)} \right){\bf{k}}, \cr} for all (a, b) ∈ M.

DOI: https://doi.org/10.2478/amsil-2024-0025 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 140 - 148
Submitted on: May 18, 2024
|
Accepted on: Nov 20, 2024
|
Published on: Dec 25, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2024 Ayoub Ouhabi, Driss Zeglami, Mohamed Ayoubi, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.