Have a personal or library account? Click to login
On the Dirichlet Problem for a Class of Nonlinear Degenerate Elliptic Equations in Weighted Sobolev Spaces Cover

On the Dirichlet Problem for a Class of Nonlinear Degenerate Elliptic Equations in Weighted Sobolev Spaces

Open Access
|Nov 2024

References

  1. A. Björn, J. Björn, and A. Christensen, Poincaré inequalities and Ap weights on bowties, arXiv preprint, 2022. Available at arXiv: 2202.07491.
  2. D. Bresch, J. Lemoine, and F. Guíllen-Gonzalez, A note on a degenerate elliptic equation with applications for lakes and seas, Electron. J. Differential Equations (2004), No. 42, 13 pp.
  3. A.C. Cavalheiro, Existence of solutions for Dirichlet problem of some degenerate quasilinear elliptic equations, Complex Var. Elliptic Equ. 53 (2008), no. 2, 185–194.
  4. A.C. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian, Opuscula Math. 33 (2013), no. 3, 439–453.
  5. A.C. Cavalheiro, Weighted Sobolev Spaces and Degenerate Elliptic Equations, Cambridge Scholars Publishing, Newcastle upon Tyne, UK, 2023.
  6. M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Berlin, 2009.
  7. M. Colombo, Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations. With Applications to the Vlasov-Poisson and Semigeostrophic Systems, Edizioni della Normale, Pisa, 2017.
  8. P. Drábek, A. Kufner, and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co., Berlin, 1997.
  9. E.B. Fabes, C.E. Kenig, and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116.
  10. J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985.
  11. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, The Clarendon Press, Oxford University Press, New York, 1993.
  12. A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, Inc., New York, 1985.
  13. A. Kufner, O. John, and S. Fučik, Function Spaces, Noordhoff International Publishing, Leiden; Academia, Prague, 1977.
  14. A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984), no. 3, 537–554.
  15. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
  16. B. Opic and A. Kufner, Hardy-Type Inequalities, Longman Scientific & Technical, Harlow, 1990.
  17. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., San Diego, 1986.
  18. B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
  19. E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I, Springer-Verlag, Berlin, 1986.
  20. E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.II/B, Springer-Verlag, Berlin, 1990.
DOI: https://doi.org/10.2478/amsil-2024-0024 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 223 - 247
Submitted on: Mar 11, 2024
Accepted on: Oct 28, 2024
Published on: Nov 19, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2024 Albo Carlos Cavalheiro, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.