References
- A. Björn, J. Björn, and A. Christensen, Poincaré inequalities and Ap weights on bowties, arXiv preprint, 2022. Available at arXiv: 2202.07491.
- D. Bresch, J. Lemoine, and F. Guíllen-Gonzalez, A note on a degenerate elliptic equation with applications for lakes and seas, Electron. J. Differential Equations (2004), No. 42, 13 pp.
- A.C. Cavalheiro, Existence of solutions for Dirichlet problem of some degenerate quasilinear elliptic equations, Complex Var. Elliptic Equ. 53 (2008), no. 2, 185–194.
- A.C. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian, Opuscula Math. 33 (2013), no. 3, 439–453.
- A.C. Cavalheiro, Weighted Sobolev Spaces and Degenerate Elliptic Equations, Cambridge Scholars Publishing, Newcastle upon Tyne, UK, 2023.
- M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Berlin, 2009.
- M. Colombo, Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations. With Applications to the Vlasov-Poisson and Semigeostrophic Systems, Edizioni della Normale, Pisa, 2017.
- P. Drábek, A. Kufner, and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co., Berlin, 1997.
- E.B. Fabes, C.E. Kenig, and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116.
- J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985.
- J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, The Clarendon Press, Oxford University Press, New York, 1993.
- A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, Inc., New York, 1985.
- A. Kufner, O. John, and S. Fučik, Function Spaces, Noordhoff International Publishing, Leiden; Academia, Prague, 1977.
- A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984), no. 3, 537–554.
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- B. Opic and A. Kufner, Hardy-Type Inequalities, Longman Scientific & Technical, Harlow, 1990.
- A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., San Diego, 1986.
- B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
- E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I, Springer-Verlag, Berlin, 1986.
- E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.II/B, Springer-Verlag, Berlin, 1990.