3.Proof of Theorem 1.1
The basic idea is to reduce the problem (P) to an operator equation Au = T and apply the theorem below.
Theorem 3.1.
Let A: XβXβ be a monotone, coercive and hemicontinuous operator on the real, separable, reflexive Banach space X. Then the following assertions hold:
- (a)
for each T β Xβ the equation Au = T has a solution uβX;
- (b)
if the operator A is strictly monotone, then equation Au = T is uniquely solvable in X.
Proof
See Theorem 26.A in [20].
To prove Theorem 1.1, we define
{\bf{B}},{{\bf{B}}_{\bf{1}}},{{\bf{B}}_{\bf{2}}},{{\bf{B}}_{\bf{3}}},{{\bf{B}}_{\bf{4}}},{{\bf{B}}_{\bf{5}}}:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \times W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to \mathbb{R}
by
\begin{array}{*{20}{l}}{{\bf{B}}\left( {u,\varphi } \right) = {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right),}\\{{{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) = \int_\Omega {\left\langle {\mathcal{A}\left( {x,u,\nabla u} \right),\nabla \varphi } \right\rangle {\omega _1}\;dx} ,}\\{{{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right) = \int_\Omega {\left\langle {{\mathcal{B}}\left( {x,u,\nabla u} \right),\nabla \varphi } \right\rangle {\nu _1}\;dx} ,}\\{{{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right) = \int_\Omega {\mathcal{H}\left( {x,u,\nabla u} \right)\varphi \;{\nu _2}\;dx} ,}\\{{{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right) = \int_\Omega {{{\left| u \right|}^{p - 2}}u\;\varphi \;{\omega _2}\;dx} ,}\\{{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right) = \sum\limits_{i,j = 1}^n {\int_\Omega {{a_{ij}}\left( x \right){D_i}u\left( x \right){D_j}\varphi \left( x \right)dx} } = \int_\Omega {\left\langle {{\mathcal{M}}\left( x \right)\nabla u\left( x \right),\nabla \varphi \left( x \right)} \right\rangle \;dx} ,}\end{array}
and
{\bf{T}}:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to \mathbb{R}
by
{\bf{T}}\left( \varphi \right) = \int_\Omega {{f_0}\;\varphi \;dx} + \sum\limits_{j = 1}^n {\int_\Omega {{f_j}\;{D_j}\varphi \;dx} } .
Then
u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
is a (weak) solution to problem (P) if
{\bf{B}}\left( {u,\varphi } \right) = {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right) = {\bf{T}}\left( \varphi \right),
for all
\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
.
Step 1. For j = 1, . . . , n we define the operator
{F_j}:W_0^{1,p}\left. {\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right) \to {L^{{p^\prime}}}\left( {\Omega ,{\omega _1}} \right)
as
\left( {{F_j}u} \right)\left( x \right) = {\mathcal{A}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right).
We now show that the operator Fj is bounded and continuous.
(i) Using (H4), we obtain
(3.1)
\begin{array}{*{20}{c}}{\left\| {{F_j}u} \right\|_{{L^{{p^\prime}}}\left( {\Omega ,{\omega _1}} \right)}^{{p^\prime}} = \int_\Omega {{{\left| {{F_j}u\left( x \right)} \right|}^{p'}}{\omega _1}\;dx} = \int_\Omega {{{\left| {{\mathcal{A}_j}\left( {x,u,\nabla u} \right)} \right|}^{p'}}{\omega _1}\;dx} }\\{ \le \int_\Omega {{{\left( {{K_1} + {h_1}{{({\omega _2}/{\omega _1})}^{1/p'}}{{\left| u \right|}^{p/p'}} + {h_2}{{\left| {\nabla u} \right|}^{p/p'}}} \right)}^{p'}}{\omega _1}\;dx} }\\{ \le {C_p}\left[ {\int_\Omega {K_1^{p'}{\omega _1}\;dx + \left\| {{h_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'}\int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx + \left\| {{h_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'}} \int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} } } \right]}\\{ \le {C_p}\left[ {\left\| {{K_1}} \right\|_{{L^{{p^\prime}}}\left( {\Omega ,{\omega _1}} \right)}^{{p^\prime}} + \left( {\left\| {{h_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'} + \left\| {{h_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p} \right],}\end{array}
where the constant Cp depends only on p. Therefore, in (3.1) we obtain
{\left\| {{F_j}u} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} \le C_p^{1/p'}\left( {{{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}} \right).
(ii) Let umβu in
W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
as m β β. We need to show that FjumβFju in Lpβ² (Ξ©, Ο1). We will apply the Lebesgue Dominated Convergence Theorem. If umβu in
W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
, then umβu in Lp(Ξ©, Ο2) and |βum|β |βu| in Lp(Ξ©, Ο1). Using Theorem 2.1, there exist a subsequence {umk} and functions Ξ¦2 β Lp(Ξ©, Ο2), Ξ¦1 β Lp(Ξ©, Ο1) such that
\begin{array}{*{20}{c}}{{u_{{m_k}}}\left( x \right) \to u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {{u_{{m_k}}}\left( x \right)} \right| \le {\Phi _2}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{{D_j}{u_{{m_k}}}\left( x \right) \to {D_j}u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {\nabla {u_{{m_k}}}\left( x \right)} \right| \le {\Phi _1}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega .}\end{array}
Next, applying (H4) we obtain
\begin{array}{*{35}{l}} {{\left| {{F}_{j}}{{u}_{{{m}_{k}}}}\left( x \right)-{{F}_{j}}u\left( x \right) \right|}^{{{p}'}}}{{\omega }_{1}} & =\ {{\left| {{\mathcal{A}}_{j}}\left( x,{{u}_{{{m}_{k}}}},\nabla {{u}_{{{m}_{k}}}} \right)-{{\mathcal{A}}_{j}}\left( x,u,\nabla u \right) \right|}^{{{p}'}}}{{\omega }_{1}} \\ {} & \le {{C}_{p}}\left( {{\left| {{\mathcal{A}}_{j}}\left( x,{{u}_{{{m}_{k}}}},\nabla {{u}_{{{m}_{k}}}} \right) \right|}^{{{p}'}}}+{{\left| {{\mathcal{A}}_{j}}\left( x,u,\nabla u \right) \right|}^{{{p}'}}} \right){{\omega }_{1}} \\ {} & \le {{C}_{p}}\left[ {{\left( {{K}_{1}}+{{h}_{1}}{{\left( {{\omega }_{2}}/{{\omega }_{1}} \right)}^{1/{p}'}}{{\left| {{u}_{{{m}_{k}}}} \right|}^{p/{p}'}}+{{h}_{2}}{{\left| \nabla {{u}_{{{m}_{k}}}} \right|}^{p/{p}'}} \right)}^{{{p}'}}} \right. \\ {} & \left. \ \ \ +\ {{\left( {{K}_{1}}+{{h}_{1}}{{\left( {{\omega }_{2}}/{{\omega }_{1}} \right)}^{1/{p}'}}{{\left| u \right|}^{p/{p}'}}+{{h}_{2}}{{\left| \nabla u \right|}^{p/{p}'}} \right)}^{{{p}'}}} \right]{{\omega }_{1}} \\ {} & \le {{C}_{p}}\left[ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| {{u}_{{{m}_{k}}}} \right|}^{p}}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| \nabla {{u}_{{{m}_{k}}}} \right|}^{p}} \right) \right. \\ {} & \left. \ \ \ +\ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| u \right|}^{p}}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| \nabla u \right|}^{p}} \right. \right]{{\omega }_{1}} \\ {} & \le {{C}_{p}}\left[ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{2}^{p}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{1}^{p} \right) \right. \\ {} & \ \ \ \left. +\ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{2}^{p}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{1}^{p} \right) \right]{{\omega }_{1}} \\ {} & =2{{C}_{p}}\left[ K_{1}^{{{p}'}}{{\omega }_{1}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{2}^{p}{{\omega }_{2}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{1}^{p}{{\omega }_{1}} \right]\in {{L}^{1}}\left( \Omega \right). \\ \end{array}
By condition (H1), we have
{F_j}{u_{{m_k}}}\left( x \right) = {\mathcal{A}_j}\left( {x,{u_{{m_k}}}\left( x \right),\nabla {u_{{m_k}}}\left( x \right)} \right) \to {\mathcal{A}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right) = {F_j}u\left( x \right),
as mk β +β. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain βFjumk β FjuβLpβ²(Ξ©,Ο1) β 0, that is, Fjumk β Fju in Lpβ² (Ξ©, Ο1). We conclude from the Convergence Principle in Banach spaces (see Proposition 10.13 in [19]) that
(3.2)
{F_j}{u_m} \to {F_j}u\;\;\;{\rm{in}}\;\;\;{L^{p'}}\left( {\Omega ,{\omega _1}} \right).
Step 2. We define the operator
{G_j}:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {L^{q'}}\left( {\Omega ,{\nu _1}} \right)
by
\left( {{G_j}u} \right)\left( x \right) = {\mathcal{B}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right).
This operator is continuous and bounded. In fact:
(i) Using (H8), Remark 2.5(i) and Theorem 2.2 (since Ο1 β Ap) we obtain
\begin{array}{*{20}{l}}{\left\| {{G_j}u} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'}}&{ = \int_\Omega {{{\left| {{G_j}u\left( x \right)} \right|}^{q'}}{\nu _1}\;dx} = \int_\Omega {{{\left| {{\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|}^{q'}}{\nu _1}\;dx} }\\{}&{ \le \int_\Omega {{{\left( {{K_2} + {g_1}{{\left| u \right|}^{q/q'}} + {g_2}{{\left| {\nabla u} \right|}^{q/q'}}} \right)}^{q'}}{\nu _1}\;dx} }\\{}&{ \le {C_q}\int_\Omega {\left[ {\left( {K_2^{q'} + g_1^{q'}{{\left| u \right|}^q} + g_2^{q'}{{\left| {\nabla u} \right|}^q}} \right){\nu _1}} \right]dx} }\\{}&{ = {C_q}\left[ {\int_\Omega {K_2^{q'}{\nu _1}\;dx} + \int_\Omega {g_1^{q'}{{\left| u \right|}^q}{\nu _1}\;dx} + \int_\Omega {g_2^{q'}{{\left| {\nabla u} \right|}^q}{\nu _1}\;dx} } \right]}\\{}&{ \le {C_q}\left( {\left\| {{K_2}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^q + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\left\| {\left| {\nabla u} \right|} \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^q} \right)}\\{}&{ \le {C_q}\left( {\left\| {{K_2}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}C_{p,q}^q\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^q} \right.}\\{}&{\left. {\;\;\; + \;C_{p,q}^q\left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^q} \right)}\\{}&{ \le {C_q}\left( {\left\| {{K_2}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'} + C_{p,q}^q\left( {C_\Omega ^q\left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^q} \right),}\end{array}
where the constant Cq depends only on q. Therefore, we obtain
\begin{array}{*{20}{l}}{{{\left\| {{G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu_1}} \right)}}}&{ \le C_q^{1/q'}\left( {{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} \right.}\\{}&{\left. {\;\;\; + \;C_{p,q}^{q - 1}\left( {C_\Omega ^{q - 1}{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}} \right).}\end{array}
(ii) Let umβu in
W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
as m β β. We need to show that GjumβGju in Lqβ² (Ξ©, Ξ½1). We will apply the Lebesgue Dominated Theorem. If umβu in
W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
, then umβu in Lp(Ξ©, Ο2 and |βum|β |βu| in Lp(Ξ©, Ο1). Analogously to Step 1(ii), there exist a subsequence {umk} and functions Ξ¦2βLp(Ξ©, Ο2) and Ξ¦1βLp(Ξ©, Ο1) such that
\begin{array}{*{20}{c}}{{u_{{m_k}}}\left( x \right) \to u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {{u_{{m_k}}}\left( x \right)} \right| \le {\Phi _2}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{{D_j}{u_{{m_k}}}\left( x \right) \to {D_j}u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {\nabla {u_{{m_k}}}\left( x \right)} \right| \le {\Phi _1}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega .}\end{array}
Next, applying (H8) and Remark 2.5(i) we obtain
\begin{array}{*{20}{l}}{{{\left| {{G_j}{u_{{m_k}}}\left( x \right) - {G_j}u\left( x \right)} \right|}^{q'}}{\nu _1}}&{ = {{\left| {{\mathcal{B}_j}\left( {x,{u_{{m_k}}},\nabla {u_{{m_k}}}} \right) - {\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|}^{q'}}{\nu _1}}\\{}&{ \le {C_q}\left[ {{{\left| {{\mathcal{B}_j}\left( {x,{u_{{m_k}}},\nabla {u_{{m_k}}}} \right)} \right|}^{q'}} + {{\left| {{\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|}^{q'}}} \right]{\nu _1}}\\{}&{ \le {C_q}\left[ {{{\left( {{K_2} + {g_1}{{\left| {{u_{{m_k}}}} \right|}^{q/q'}} + {g_2}{{\left| {\nabla {u_{{m_k}}}} \right|}^{q/q'}}} \right)}^{q'}}} \right.}\\{}&{\left. {\;\;\; + \;{{\left( {{K_2} + {g_1}{{\left| u \right|}^{q/q'}} + {g_2}{{\left| {\nabla u} \right|}^{q/q'}}} \right)}^{q'}}} \right]{\nu _1}}\\{}&{ \le {C_q}\left[ {\left( {K_2^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| {{u_{{m_k}}}} \right|}^q} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| {\nabla {u_{{m_k}}}} \right|}^q}} \right)} \right.}\\{}&{\;\;\;\left. { + \;\left( {K_2^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| u \right|}^q} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| {\nabla u} \right|}^q}} \right)} \right]{\nu _1}}\\{}&{ \le 2{C_q}\left[ {K_2^{q'}{\nu _1} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\Phi _2^q{\nu _1} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\Phi _1^q{\nu _1}} \right] \in {L^1}\left( \Omega \right),}\end{array}
since
\int_\Omega {\Phi _1^q{\nu _1}\;dx} \le C_{p,q}^q\int_\Omega {\Phi _1^p{\omega _1}\;dx}
and
\int_\Omega {\Phi _2^q{\nu _1}\;dx} \le \tilde C_{p,q}^q\int_\Omega {\Phi _2^p{\omega _2}\;dx}
. By condition (H5), we have
{G_j}{u_{{m_k}}}\left( x \right) = {\mathcal{B}_j}\left( {x,{u_{{m_k}}}\left( x \right),\nabla {u_{{m_k}}}\left( x \right)} \right) \to {\mathcal{B}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right) = {G_j}u\left( x \right),
as mk β +β. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain
{\left\| {{G_j}{u_{{m_k}}} - {G_j}u} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} \to 0,
that is,
{G_j}{u_{{m_k}}} \to {G_j}u\;\;\;{\rm{in}}\;{L^{q'}}\left( {\Omega ,{\nu _1}} \right).
We conclude from the Convergence Principle in Banach spaces (see Proposition 10.13 in [19]) that
(3.3)
{G_j}{u_m} \to {G_j}u\;\;{\rm{in}}\;{L^{q'}}\left( {\Omega ,{\nu _1}} \right).
Step 3. We define the operator
H:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {L^{s'}}\left( {\Omega ,{\nu _2}} \right)
by
\left( {Hu} \right)\left( x \right) = \mathcal{H}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right).
We also have that the operator H is continuous and bounded. In fact:
(i) Using (H12), Remark 2.5(ii) and Theorem 2.2 we obtain
\begin{array}{*{20}{l}}{\left\| {Hu} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'}}&{ = \int_\Omega {{{\left| {Hu} \right|}^{s'}}{\nu _2}\;dx} = \int_\Omega {{{\left| {\mathcal{H}\left( {x,u,\nabla u} \right)} \right|}^{s'}}{\nu _2}\;dx} }\\{}&{ \le \int_\Omega {{{({K_3} + {h_3}{{\left| u \right|}^{s/s'}} + {h_4}{{\left| {\nabla u} \right|}^{s/s'}})}^{s'}}{\nu _2}\;dx} }\\{}&{ \le {C_s}\int_\Omega {\left( {K_3^{s'} + h_3^{s'}{{\left| u \right|}^s} + h_4^{s'}{{\left| {\nabla u} \right|}^s}} \right){\nu _2}\;dx} }\\{}&{ \le {C_s}\left[ {\int_\Omega {K_3^{s'}\;{\nu _2}\;dx + \left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}\int_\Omega {{{\left| u \right|}^s}{\nu _2}\;dx + \left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}\int_\Omega {{{\left| {\nabla u} \right|}^s}{\nu _2}\;dx} } } } \right]}\\{}&{ \le {C_s}\left( {\left\| {{K_3}} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'} + \left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^s\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right.}\\{}&{\left. {\;\;\; + \;\left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^s\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right)}\\{}&{ \le {C_s}\left( {\left\| {{K_3}} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'} + \left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^sC_\Omega ^s\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right.}\\{}&{\left. {\;\;\; + \;\left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^s\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right)}\\{}&{ \le {C_s}\left( {\left\| {{K_3}} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'} + C_{p,s}^s\left( {C_\Omega ^s\left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'} + \left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^s} \right),}\end{array}
where the constant Cs depends only on s. Hence, we obtain
\begin{array}{*{20}{l}}{{{\left\| {Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}}&{ \le {C_s}\left[ {{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}} \right.}\\{}&{\;\;\;\left. { + \;C_{p,s}^{s - 1}\left( {C_\Omega ^{s - 1}{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}} \right].}\end{array}
(ii) Applying (H12) and Remark 2.5(ii), by the same argument used in Step 2(ii), we obtain analogously, if umβu in
W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
then
(3.4)
H{u_m} \to Hu\;\;\;{\rm{in}}\;\;\;{L^{s'}}\left( {\Omega ,{\nu _2}} \right).
Step 4. We define the operator
J:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {L^{p'}}\left( {\Omega ,{\omega _2}} \right)
by
\left( {Ju} \right)\left( x \right) = {\left| {u\left( x \right)} \right|^{p - 2}}u\left( x \right).
We also have that the operator J is continuous and bounded. In fact:
(i) For all
u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
,
\begin{array}{*{20}{l}}{\left\| {Ju} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}^{p'}}&{ = \int_\Omega {{{\left| {Ju} \right|}^{p'}}{\omega _2}dx} = \int_\Omega {{{\left| u \right|}^{\left( {p - 1} \right)p'}}{\omega _2}dx} }\\{}&{ = \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx \le \left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p} .}\end{array}
Hence,
{\left\| {Ju} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}} \le \left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}
.
(ii) Let umβu in
W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
. Then umβu in Lp(Ξ©, Ο2). Using Theorem 2.1, there exist a subsequence {umk} and a function Ξ¦2 β Lp(Ξ©, Ο2) such that
\begin{array}{*{20}{c}}{{u_{{m_k}}}\left( x \right) \to u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {{u_{{m_k}}}\left( x \right)} \right| \le {\Phi _2}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega .}\end{array}
Next, applying Proposition 2.4(a), we have
\begin{array}{*{20}{l}}{\left\| {J{u_{{m_k}}} - Ju} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}^{p'}}&{ = \int_\Omega {{{\left| {J{u_{{m_k}}} - Ju} \right|}^{p'}}{\omega _2}\;dx} }\\{}&{ = \int_\Omega {{{\left| {{{\left| {{u_{{m_k}}}} \right|}^{p - 2}}{u_{{m_k}}} - {{\left| u \right|}^{p - 2}}u} \right|}^{p'}}{\omega _2}\;dx} }\\{}&{ \le \int_\Omega {{{\left[ {{C_p}\left| {{u_{{m_k}}} - u} \right|{{\left( {\left| {{u_{{m_k}}}} \right| + \left| u \right|} \right)}^{p - 2}}} \right]}^{p'}}{\omega _2}\;dx} }\\{}&{ = C_p^{p'}\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^{p'}}{{\left( {\left| {{u_{{m_k}}}} \right| + \left| u \right|} \right)}^{\left( {p - 2} \right)p'}}{\omega _2}\;dx} }\\{}&{ \le {2^{\left( {p - 2} \right)p'}}C_p^{p'}\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^{p'}}\Phi _2^{\left( {p - 2} \right)p'}{\omega _2}\;dx} }\\{}&{ \le {2^{\left( {p - 2} \right)p'}}C_p^{p'}{{\left( {\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^{p'\left( {p/p'} \right)}}{\omega _2}\;dx} } \right)}^{p'/p}}}\\{}&{ \times \;{{\left( {\int_\Omega {\Phi _2^{\left( {p - 2} \right)p'p/\left( {p - p'} \right)}{\omega _2}dx} } \right)}^{\left( {p - p'} \right)/p}}}\\{}&{ = {2^{\left( {p - 2} \right)p'}}C_p^{p'}{{\left( {\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^p}{\omega _2}\;dx} } \right)}^{p'/p}}{{\left( {\int_\Omega {\Phi _2^p{\omega _2}\;dx} } \right)}^{\left( {p - p'} \right)/p}}}\\{}&{ = {2^{\left( {p - 2} \right)p'}}C_p^{p'}\left\| {{u_{{m_k}}} - u} \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}^{p'}\left\| {{\Phi _2}} \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}^{p - p'}.}\end{array}
Hence βJumk β JuβLpβ²(Ξ©,Ο2)β0 as mkββ. We conclude from the Convergence Principle in Banach spaces that
(3.5)
J{u_m} \to Ju\;\;\;{\rm{in}}\;\;\;{L^{p'}}\left( {\Omega ,{\omega _2}} \right).
Step 5. By (H13) and Remark 2.5(iii) we obtain
\begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right|}&{ \le \int_\Omega {\left| {\left\langle {{\mathcal{M}}\left( x \right)\nabla u\left( x \right),\nabla \varphi \left( x \right)} \right\rangle } \right|dx} }\\{}&{ \le \int_\Omega {{{\left\langle {\mathcal{M}\left( x \right)\nabla u\left( x \right),\nabla u\left( x \right)} \right\rangle }^{1/2}}{{\left\langle {\mathcal{M}\left( x \right)\nabla \varphi \left( x \right),\nabla \varphi \left( x \right)} \right\rangle }^{1/2}}dx} }\\{}&{ \le {{\left( {\int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla u\left( x \right),\nabla u\left( x \right)} \right\rangle dx} } \right)}^{1/2}}{{\left( {\int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla \varphi \left( x \right),\nabla \varphi \left( x \right)} \right\rangle dx} } \right)}^{1/2}}}\\{}&{ \le {{\left( {\int_\Omega {\Lambda {{\left| {\nabla u\left( x \right)} \right|}^2}{\nu _3}\;dx} } \right)}^{1/2}}{{\left( {\int_\Omega {\Lambda {{\left| {\nabla \varphi \left( x \right)} \right|}^2}{\nu _3}dx} } \right)}^{1/2}}}\\{}&{ = \Lambda {{\left\| {\left| {\nabla u} \right|} \right\|}_{{L^2}\left( {\Omega ,{\nu _3}} \right)}}{{\left\| {\left| {\nabla \varphi \left( x \right)} \right|} \right\|}_{{L^2}\left( {\Omega ,{\nu _3}} \right)}}}\\{}&{ \le \Lambda C_{p,2}^2{{\left\| {\left| {\nabla u} \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}{{\left\| {\left| {\nabla \varphi \left( x \right)} \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \Lambda C_{p,2}^2{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}
Step 6. Since
\frac{{{f_0}}}{{{\nu _1}}} \in {L^{q'}}\left( {\Omega ,{\nu _1}} \right)
and
\frac{{{f_j}}}{{{\omega _1}}} \in {L^{p'}}\left( {\Omega ,{\omega _1}} \right)\left( {j = 1, \ldots ,n} \right)
then
{\bf{T}} \in {\left[ {W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right]^*}
. Moreover, by Remark 2.5(i), we have
\begin{array}{*{20}{l}}{\left| {{\bf{T}}\left( \varphi \right)} \right|}&{ \le \int_\Omega {\left| {{f_0}} \right|\left| \varphi \right|dx} + \sum\limits_{j = 1}^n {\int_\Omega {\left| {{f_j}} \right|\left| {{D_j}\varphi } \right|dx} } }\\{}&{ = \int_\Omega {\frac{{\left| {{f_0}} \right|}}{{{\nu _1}}}\left| \varphi \right|{\nu _1}\;dx} + \sum\limits_{j = 1}^n {\int_\Omega {\frac{{\left| {{f_j}} \right|}}{{{\omega _1}}}\left| {{D_j}\varphi } \right|{\omega _1}\;dx} } }\\{}&{ \le {{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| \varphi \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} + \left( {\sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {{C_{p,q}}{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}
Moreover, we also have
(3.6)
\begin{array}{*{20}{l}}{\left| {{\bf{B}}\left( {u,\varphi } \right)} \right|}&{ \le {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) + \left| {{{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right)} \right| + \left| {{B_3}\left( {u,\varphi } \right)} \right| + \left| {{{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right)} \right| + \left| {{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right|}\\{}&{ \le \int_\Omega {\left| {\mathcal{A}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\omega _1}dx} + \int_\Omega {\left| {\mathcal{B}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\nu _1}\;dx} }\\{}&{ + \;\int_\Omega {\left| {\mathcal{H}\left( {x,u,\nabla u} \right)} \right|\left| \varphi \right|{\nu _2}} + \int_\Omega {{{\left| u \right|}^{p - 1}}\left| \varphi \right|{\omega _2}\;dx} }\\{}&{ + \;\int_\Omega {\left| {\left\langle {{\mathcal{M}}\left( x \right)\nabla u,\nabla \varphi } \right\rangle } \right|dx} .}\end{array}
In (3.6) we have, by (H4),
\begin{array}{*{20}{l}}{\int_\Omega {\left| {\mathcal{A}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\omega _1}\;dx} }&{ \le \int_\Omega {\left( {{K_1} + {h_1}{{\left( {\frac{{{\omega _2}}}{{{\omega _1}}}} \right)}^{1/p'}}{{\left| u \right|}^{p/p'}} + {h_2}{{\left| {\nabla u} \right|}^{p/p'}}} \right)\left| {\nabla \varphi } \right|{\omega _1}\;dx} }\\{}&{ \le \int_\Omega {{K_1}\left| {\nabla \varphi } \right|{\omega _1}\;dx + {{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \int_\Omega {{{\left( {\frac{{{\omega _2}}}{{{\omega _1}}}} \right)}^{1/p'}}{{\left| u \right|}^{p/p'}}\left| {\nabla \varphi } \right|{\omega _1}\;dx} }\\{}&{\;\;\; + \;{{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}\int_\Omega {{{\left| {\nabla u} \right|}^{p/p'}}\left| {\nabla \varphi } \right|{\omega _1}\;dx} }\\{}&{ \le {{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}} + {{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}^{p - 1}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{p - 1}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {{{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right.} \right.}\\{}&{\left. {\left. { + \;{{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}} \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
and by (H8) and Remark 2.5(i),
\begin{array}{*{20}{l}}{\int_\Omega {\left| {\mathcal{B}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\nu _1}\;dx} }&{ \le \int_\Omega {\left( {{K_2} + {g_1}{{\left| u \right|}^{q/q'}} + {g_2}{{\left| {\nabla u} \right|}^{q/q'}}} \right)\left| {\nabla \varphi } \right|{\nu _1}\;dx} }\\{}&{ \le {{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} + {{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^{q/q'}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| {\left| {\nabla u} \right|} \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^{q/q'}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}}}\\{}&{ \le {C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;C_{p,q}^{q - 1}{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{q - 1}{C_{p,q}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}C_{p,q}^{q - 1}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{q - 1}{C_{p,q}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left[ {{C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \left( {C_{p,q}^q{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right.} \right.}\\{}&{\left. {\left. {\;\;\; + \;C_{p,q}^q{{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}} \right]{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}
According to (H12) and Remark 2.5(ii),
\begin{array}{*{20}{l}}{\int_\Omega {\left| {\mathcal{H}\left( {x,u,\nabla u} \right)} \right|\left| \varphi \right|{\nu _2}\;dx} }&{ \le \int_\Omega {\left( {{K_3} + {h_3}{{\left| u \right|}^{s/s'}} + {h_4}{{\left| {\nabla u} \right|}^{s/s'}}} \right)\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ \le \int_\Omega {{K_3}\left| \varphi \right|{\nu _2}\;dx + {{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \int_\Omega {{{\left| u \right|}^{s/s'}}\left| \varphi \right|{\nu _2}\;dx} }\\{}&{\;\;\; + \;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}\int_\Omega {{{\left| {\nabla u} \right|}^{s/s'}}\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ \le {{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}} + {{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^s}\left( {\Omega ,{\nu _2}} \right)}^{s/s'}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| {\nabla u} \right\|_{{L^s}\left( {\Omega ,{\nu _1}} \right)}^{s - 1}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}}}\\{}&{ \le {C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( \Omega \right)}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}} + {{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}C_{p,s}^{s - 1}\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{s - 1}{C_{p,s}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}C_{p,s}^{s - 1}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{s - 1}{C_{p,s}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left[ {{C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + C_{p,s}^s\left( {{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right.} \right.}\\{}&{\left. {\left. {\;\;\; + \;\;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}} \right]{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
and
\begin{array}{*{20}{l}}{\int_\Omega {{{\left| u \right|}^{p - 1}}\left| \varphi \right|{\omega _2}\;dx} }&{ \le {{\left( {\int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} } \right)}^{1/p'}}{{\left( {\int_\Omega {{{\left| \varphi \right|}^p}{\omega _2}\;dx} } \right)}^{1/p}}}\\{}&{ \le {C_\Omega }\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
and by Step 5,
\left| {{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right| \le \Lambda C_{p,2}^2{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}{\left\| \varphi \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.
Hence, in (3.6) we obtain, for all
u,\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
\begin{array}{*{20}{l}}{\left| {{\bf{B}}\left( {u,\varphi } \right)} \right| \le \left[ {{{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}} \right.}\\{\;\;\;\; + \;{C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + C_{p,q}^q\left( {{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}}\\{\;\;\;\; + \;{C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + C_{p,s}^s\left( {{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\left. { + \;{C_\Omega }\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1} + \Lambda C_{p,2}^2{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}} \right]{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}
Since B(u, .) is linear, for each
u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
, there exists a linear and continuous functional on
W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
denoted by Au such that (Au|Ο) = B(u, Ο) for all
u,\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
(here (f|x) denotes the value of the linear functional f at the point x). Moreover
\begin{array}{*{20}{l}}{{{\left\| {Au} \right\|}_*} \le {{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}}\\{\;\;\;\; + \;{C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + C_{p,q}^q\left( {{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}}\\{\;\;\;\; + \;{C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + C_{p,s}^s\left( {{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;{C_\Omega }\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1} + \Lambda C_{p,2}^2{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
where
{\left\| {Au} \right\|_*} = {\rm{\;sup\;}}\{ \left| {(Au|\varphi )} \right| = \left| {{\bf{B}}\left( {u,\varphi } \right)} \right|:\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right),{\left\| \varphi \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} = 1\}
is the norm of the operator Au. Hence, we obtain the operator
A:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {\left[ {W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right]^*},\;\;\;u \mapsto Au.
Consequently, problem (P) is equivalent to the operator equation
Au = {\bf{T}},\;\;\;u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right).
Step 7. Using (H2), (H6), (H10), (H13) and Proposition 2.4(b), we obtain, for u1,
{u_2} \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
, u1 β u2,
\begin{array}{*{35}{l}} (A{{u}_{1}}-A{{u}_{2}}|{{u}_{1}}-{{u}_{2}}) & =\mathbf{B}\left( {{u}_{1}},~{{u}_{1}}-{{u}_{2}} \right)-\mathbf{B}\left( {{u}_{2}},{{u}_{1}}-{{u}_{2}} \right) \\ {} & =\int_{\Omega }{\left\langle \mathcal{A}\left( x,{{u}_{1}}\nabla {{u}_{1}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\omega }_{1}}dx}+\int_{\Omega }{\left\langle \mathcal{B}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\nu }_{1}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\mathcal{H}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right)\left( {{u}_{1}}-{{u}_{2}} \right){{\nu }_{2}}dx}+\int_{\Omega }{{{\left| {{u}_{1}} \right|}^{p-2}}{{u}_{1}}\left( {{u}_{1}}-{{u}_{2}} \right){{\omega }_{2}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left\langle \mathcal{M}\left( x \right)\nabla {{u}_{1}}\left( x \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle dx} \\ {} & \ \ \ -\ \int_{\Omega }{\left\langle \mathcal{A}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\omega }_{1}}dx}-\int_{\Omega }{\left\langle \mathcal{B}(x,{{u}_{2}},\nabla {{u}_{2}},\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\nu }_{1}}dx} \\ {} & \ \ \ -\ \int_{\Omega }{\mathcal{H}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right)\left( {{u}_{1}}-{{u}_{2}} \right){{\nu }_{2}}dx}-\int_{\Omega }{{{\left| {{u}_{2}} \right|}^{p-2}}{{u}_{2}}\left( {{u}_{1}}-{{u}_{2}} \right){{\omega }_{2}}dx} \\ {} & \ \ \ -\ \int_{\Omega }{\left\langle \mathcal{M}\left( x \right)\nabla {{u}_{2}}\left( x \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle dx} \\ {} & =\int_{\Omega }{\left\langle \mathcal{A}\left( x,{{u}_{1}}\nabla {{u}_{1}} \right)-\mathcal{A}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\omega }_{1}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left\langle \mathcal{B}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right)-\mathcal{B}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\nu }_{1}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left( \mathcal{H}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right)-\mathcal{H}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right) \right)\left( {{u}_{1}}-{{u}_{2}} \right){{v}_{2}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left( {{\left| {{u}_{1}} \right|}^{p-2}}{{u}_{1}}-{{\left| {{u}_{2}} \right|}^{p-2}}{{u}_{2}} \right)\left( {{u}_{1}}-{{u}_{2}} \right){{\omega }_{2}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left\langle \mathcal{M}\left( x \right)\nabla \left( {{u}_{1}}-{{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle dx} \\ {} & \ge {{\theta }_{1}}\int_{\Omega }{{}}{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{p}}{{\omega }_{1}}dx+{{\beta }_{p}}\int_{\Omega }{{{\left( \left| {{u}_{1}}\left| + \right|{{u}_{2}} \right| \right)}^{p-2}}{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{2}}{{\omega }_{2}}dx} \\ {} & \ \ \ +\ \Lambda \int_{\Omega }{{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{2}}{{\nu }_{3}}dx} \\ {} & \ge {{\theta }_{1}}\int_{\Omega }{{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{p}}{{\omega }_{1}}\ dx}+{{\beta }_{p}}\int_{\Omega }{{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{p-2}}{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{2}}{{\omega }_{2}}dx} \\ {} & ={{\theta }_{1}}\int_{\Omega }{{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{p}}{{\omega }_{1}}dx}+{{\beta }_{p}}\int_{\Omega }{{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{p}}{{\omega }_{2}}dx}\ge {{\gamma }_{1}}\left\| {{u}_{1}}-{{u}_{2}} \right\|_{W_{0}^{1,p}\left( \Omega ,{{\omega }_{1}},{{\omega }_{2}} \right)}^{p}, \\ \end{array}
where Ξ³1 = min{ΞΈ1, Ξ²p}. Therefore, the operator A is strictly monotone. Moreover, from (H3), (H7), (H11) and (H13) we obtain
\begin{array}{*{20}{l}}{\left( {Au|u} \right)}&{ = {\bf{B}}\left( {u,u} \right) = {{\bf{B}}_{\bf{1}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{2}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{3}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{4}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{5}}}\left( {u,u} \right)}\\{}&{ = \int_\Omega {\left\langle {\mathcal{A}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\omega _1}\;dx} + \int_\Omega {\left\langle {\mathcal{B}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\nu _1}\;dx} }\\{}&{\;\;\; + \;\int_\Omega {\mathcal{H}\left( {x,u,\nabla u} \right)u\;{\nu _2}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} + \int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla u,\nabla u} \right\rangle dx} }\\{}&{ \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} + {\lambda _2}\int_\Omega {{{\left| {\nabla u} \right|}^q}{\nu _1}\;dx} + {\Lambda _2}\int_\Omega {} {{\left| u \right|}^q}{\nu _1}\;dx}\\{}&{\;\;\; + \;{\lambda _3}\int_\Omega {{{\left| {\nabla u} \right|}^s}{\nu _2}\;dx} + {\Lambda _3}\int_\Omega {{{\left| u \right|}^s}{\nu _2}\;dx} }\\{}&{\;\;\; + \;\int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} + \Lambda \int_\Omega {{{\left| {\nabla u} \right|}^2}{\nu _3}\;dx} }\\{}&{ \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} \ge {\gamma _2}\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1}} \right),{\omega _2}}^p,}\end{array}
where Ξ³2 = min{Ξ»1, 1}. Hence, since 1 < q, s < p < β, we have
\frac{{(Au|u)}}{{{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}}} \to + \infty ,\;\;{\rm{as}}\;\;{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} \to + \infty ,
that is, A is coercive.
Step 8. We need to show that the operator A is continuous. Let umβu in X as m β β. We have,
\begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{1}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right)} \right|}&{ \le \sum\limits_{j = 1}^n {\int_\Omega {\left| {{\mathcal{A}_j}\left( {x,{u_m},\nabla {u_m}} \right) - {\mathcal{A}_j}\left( {x,u,\nabla u} \right)} \right|\left| {{D_j}\varphi } \right|{\omega _1}\;dx} } }\\{}&{ = \sum\limits_{j = 1}^n {\int_\Omega {\left| {{F_j}{u_m} - {F_j}u} \right|\left| {{D_j}\varphi } \right|{\omega _1}\;dx} } }\\{}&{ \le \left( {\sum\limits_{j = 1}^n {{{\left\| {{F_j}{u_m} - {F_j}u} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {\sum\limits_{j = 1}^n {{{\left\| {{F_j}{u_m} - {F_j}u} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}
By Remark 2.5(i), we obtain
\begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{2}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right)} \right|}&{ \le \sum\limits_{j = 1}^n {\int_\Omega {\left| {{\mathcal{B}_j}\left( {x,{u_m},\nabla {u_m}} \right) - {\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|\left| {{D_j}\varphi } \right|{\nu _1}\;dx} } }\\{}&{ = \sum\limits_{j = 1}^n {\int_\Omega {\left| {{G_j}{u_m} - {G_j}u} \right|\left| {{D_j}\varphi } \right|{\nu _1}\;dx} } }\\{}&{ \le \left( {\sum\limits_{j = 1}^n {{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}}}\\{}&{ \le {C_{p,q}}\left( {\sum\limits_{j = 1}^n {{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le {C_{p,q}}\left( {\sum\limits_{j = 1}^n {{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} } \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
and, by Remark 2.5(ii),
\begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{3}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right)} \right|}&{ \le \int_\Omega {\left| {\mathcal{H}\left( {x,{u_m},\nabla {u_m}} \right) - \mathcal{H}\left( {x,u,\nabla u} \right)} \right|\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ = \int_\Omega {\left| {H{u_m} - Hu} \right|\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ \le {{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}}}\\{}&{ \le {C_{p,s}}{{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le {C_{p,s}}{{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}
On account of Step 4,
\begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{4}}}\left( {{u_m},\varphi } \right) - {B_4}\left( {u,\varphi } \right)} \right|}&{ \le \int_\Omega {\left| {{{\left| {{u_m}} \right|}^{p - 2}}{u_m} - {{\left| u \right|}^{p - 2}}u} \right|\left| \varphi \right|{\omega _2}\;dx} }\\{}&{ = \int_\Omega {\left| {J{u_m} - Ju} \right|\left| \varphi \right|{\omega _2}\;dx} }\\{}&{ \le {{\left\| {J{u_m} - Ju} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
and by Step 5,
\begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{5}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right|}&{ = \left| {\int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla \left( {{u_m} - u} \right)\nabla \varphi } \right\rangle dx} } \right|}\\{}&{ \le \Lambda C_{p,2}^2{{\left\| {{u_m} - u} \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
for all
\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
. Hence,
\begin{array}{*{35}{l}} \left| \mathbf{B}\left( {{u}_{m}},\varphi \right)-\mathbf{B}\left( u,\varphi \right) \right|\le \left| {{\mathbf{B}}_{\mathbf{1}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{1}}}\left( u,\varphi \right) \right|+\left| {{\mathbf{B}}_{\mathbf{2}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{2}}}\left( u,\varphi \right) \right| \\ +\ \left| {{\mathbf{B}}_{\mathbf{3}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{3}}}\left( u,\varphi \right) \right|+\left| {{\mathbf{B}}_{\mathbf{4}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{4}}}\left( u,\varphi \right) \right|+\left| {{\mathbf{B}}_{\mathbf{5}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{5}}}\left( u,\varphi \right) \right| \\ \ \ \ \ \ \le \left[ \sum\limits_{j=1}^{n}{\left( {{\left\| {{F}_{j}}{{u}_{m}}-{{F}_{j}}u \right\|}_{{{L}^{{{p}'}}}\left( \Omega ,{{\omega }_{1}} \right)}}+{{C}_{p,q}}{{\left\| {{G}_{j}}{{u}_{m}}-{{G}_{j}}u \right\|}_{{{L}^{{{q}'}}}\left( \Omega ,{{\nu }_{1}} \right)}} \right)} \right. \\ \ \ \ \ \ \ \ \ \ \ \ +\ {{C}_{p,s}}{{\left\| H{{u}_{m}}-Hu \right\|}_{{{L}^{{{s}'}}}\left( \Omega ,{{\nu }_{2}} \right)}}+{{\left\| J{{u}_{m}}-Ju \right\|}_{{{L}^{{{p}'}}}\left( \Omega ,{{\omega }_{2}} \right)}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left. +\ \Lambda C_{p,2}^{2}\|{{u}_{m}}-u{{\|}_{W_{0}^{1,p}\left( \Omega ,{{\omega }_{1}},{{\omega }_{2}} \right)}} \right]{{\left\| \varphi \right\|}_{W_{0}^{1,p}\left( \Omega ,{{\omega }_{1}},{{\omega }_{2}} \right)}}. \\ \end{array}
Then we obtain
\begin{array}{*{20}{l}}{{{\left\| {A{u_m} - Au} \right\|}_*} \le \sum\limits_{j = 1}^n {\left( {{{\left\| {{F_j}{u_m} - {F_j}u} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + {C_{p,q}}{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} \right)} }\\{\;\;\;\;\;\;\;\;\;\;\;\;\; + \;{C_{p,s}}{{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + {{\left\| {J{u_m} - Ju} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}}}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\Lambda C_{p,2}^2{{\left\| {{u_m} - u} \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}
Hence, using (3.2), (3.3), (3.4) and (3.5) we have βAum β Auβββ0 as m β +β, that is, A is continuous and this implies that A is hemicontinuous.
Therefore, by Theorem 3.1, the operator equation Au = T has a unique solution
u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
and it is the unique solution for problem (P).
Step 8. Estimates for
{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}
. In particular, by setting Ο = u in Definition 2.3, we have
(3.7)
{\bf{B}}\left( {u,u} \right) = {{\bf{B}}_{\bf{1}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{2}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{3}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{4}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{5}}}\left( {u,u} \right) = {\bf{T}}\left( u \right).
Hence, using (H3), (H7), (H11) and (H13) we obtain
(3.8)
\begin{array}{*{20}{l}}{{{\bf{B}}_{\bf{1}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{2}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{3}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{4}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{5}}}\left( {u,u} \right)}\\{\;\;\;\;\;\;\; = \int_\Omega {\left\langle {\mathcal{A}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\omega _1}\;dx} + \int_\Omega {\left\langle {{\bf{B}}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\nu _1}\;dx} }\\{\;\;\;\;\;\;\;\;\;\;\; + \;\int_\Omega {\mathcal{H}\left( {x,u,\nabla u} \right)u\;{\nu _2}\;dx} + \int_\Omega {{{\left| u \right|}^{p - 2}}{u^2}{\omega _2}dx} + \int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla u,\nabla u} \right\rangle dx} }\\{\;\;\;\;\;\;\; \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}dx} + {\lambda _2}\int_\Omega {{{\left| {\nabla u} \right|}^q}{\nu _1}\;dx} + {\Lambda _2}\int_\Omega {{{\left| u \right|}^q}{\nu _1}\;dx} }\\{\;\;\;\;\;\;\;\;\;\;\; + \;{\lambda _3}\int_\Omega {{{\left| {\nabla u} \right|}^s}{\nu _2}\;dx} + {\Lambda _3}\int_\Omega {{{\left| u \right|}^s}{\nu _2}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} + \Lambda \int_\Omega {{{\left| {\nabla u} \right|}^2}{\nu _3}\;dx} }\\{\;\;\;\;\;\;\; \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} \ge {\gamma _2}\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p,}\end{array}
where Ξ³2 = min{Ξ»1, 1}, and by Remark 2.5(i)
(3.9)
\begin{array}{*{20}{l}}{{\bf{T}}\left( u \right)}&{ = \int_\Omega {{f_0}\;u\;dx} + \sum\limits_{j = 1}^n {\int_\Omega {{f_j}{D_j}u\;dx} } }\\{}&{ \le \;{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| u \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} + \left( {\sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| {\left| {\nabla u} \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {{C_{p,q}}{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}}\\{}&{ = M{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array}
where
M = {C_{p,q}}{\left\| {{f_0}/{\nu _1}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}}
. Hence in (3.7), using (3.8) and (3.9), we obtain
{\gamma _2}\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p \le M{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}
. Therefore,
\begin{array}{*{20}{l}}{{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}}&{ \le {{\left( {\frac{M}{{{\gamma _2}}}} \right)}^{1/\left( {p - 1} \right)}}}\\{}&{ = C{{\left( {{C_{p,q}}{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right)}^{1/\left( {p - 1} \right)}},}\end{array}
where C = (1/Ξ³2)1/(pβ1).
Example
Let Ξ© = {(x, y) β β2 : x2 + y2 < 1}, the weight functions Ο1(x, y) = (x2 + y2)β1/2, Ο2(x, y) = (x2 + y2)β3/2, Ξ½1(x, y) = (x2 + y2)β1/3, Ξ½2(x, y) = (x2 + y2)β1 and Ξ½3(x, y) = (x2 + y2)β1/2 (Ο1, Ο2 β A4, p = 4, q = 3 and s = 2), the function
\mathcal{A}:\Omega \times \mathbb{R} \times {\mathbb{R}^2} \to {\mathbb{R}^2},\;\;\;\mathcal{A}\left( {\left( {x,y} \right),\eta ,\xi } \right) = {h_1}\left( {x,y} \right)|\xi {|^2}\xi ,
where h1(x, y) = 2 e(x2+y2), and
\mathcal{B}:\Omega \times \mathbb{R} \times {\mathbb{R}^2} \to {\mathbb{R}^2},\;\;\mathcal{B}\left( {\left( {x,y} \right),\eta ,\xi } \right) = {g_2}\left( {x,y} \right)\left| \xi \right|\xi ,
where g2(x, y) = 2 + cos(x2 + y2), and
\mathcal{H}:\Omega \times \mathbb{R} \times {\mathbb{R}^2} \to \mathbb{R},\;\;\;\mathcal{H}\left( {\left( {x,y} \right),\eta ,\xi } \right) = \eta \;{h_2}\left( {x,y} \right),
where h2(x, y) = 1 + cos2(xy) and the coefficient matrix
\mathcal{M}\left( {x,y} \right) = \left( {{a_{i,j}}\left( {x,y} \right)} \right) = \left( {\begin{array}{*{20}{c}}{\lambda {{({x^2} + {y^2})}^{ - 1/2}}}&0\\0&{\Lambda {{({x^2} + {y^2})}^{ - 1/2}}}\end{array}} \right),
where 0 < Ξ» < Ξ.
Let us consider the partial differential operator
\begin{array}{*{20}{l}}{Lu\left( {x,y} \right)}&{ = - {\rm{div}}\left( {\mathcal{A}\left( {\left( {x,y} \right),\nabla u} \right){\omega _1}\left( {x,y} \right) + \mathcal{B}\left( {\left( {x,y} \right),u,\nabla u} \right){\nu _1}\left( {x,y} \right)} \right)}\\{}&{\;\;\; + \;\mathcal{H}\left( {\left( {x,y} \right),u,\nabla u} \right){\nu _2}\left( {x,y} \right) + {{\left| u \right|}^2}u{\omega _2}\left( {x,y} \right) - \sum\limits_{i,j = 1}^2 {{D_j}\left( {{a_{ij}}\left( x \right){D_i}u\left( u \right)} \right).} }\end{array}
Therefore, by Theorem 1.1, the problem
\left\{ {\begin{array}{*{20}{l}}{Lu\left( x \right) = \frac{{\;\cos \;\left( {xy} \right)}}{{\left( {{x^2} + {y^2}} \right)}} - \frac{\partial }{{\partial x}}\left( {\frac{{\;\sin \;\left( {xy} \right)}}{{\left( {{x^2} + {y^2}} \right)}}} \right) - \frac{\partial }{{\partial y}}\left( {\frac{{\;\sin \;\left( {xy} \right)}}{{\left( {{x^2} + {y^2}} \right)}}} \right)}&{{\rm{in}}\;\;\Omega ,}\\{u\left( x \right) = 0\;\;{\rm{on}}\;\partial \Omega ,}&{}\end{array}} \right.
has a unique solution
u \in W_0^{1,4}\left( {\Omega ,{\omega _1},{\omega _2}} \right)
.