Have a personal or library account? Click to login
On the Dirichlet Problem for a Class of Nonlinear Degenerate Elliptic Equations in Weighted Sobolev Spaces Cover

OnΒ theΒ Dirichlet Problem forΒ aΒ Class ofΒ Nonlinear Degenerate Elliptic Equations inΒ Weighted Sobolev Spaces

By:Β Albo Carlos CavalheiroΒ Β 
Open Access
|Nov 2024

Full Article

1.
Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev space W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) (see Definition 2.2) for the Dirichlet problem (P) Lux=f0xβˆ’βˆ‘j=1nDjfjxin  Ω,ux=0    onβ€‰βˆ‚Ξ©, \left\{ {\begin{array}{*{20}{l}}{Lu\left( x \right) = {f_0}\left( x \right) - \sum\limits_{j = 1}^n {{D_j}{f_j}\left( x \right)} }&{{\rm{in}}\;\;\Omega ,}\\{u\left( x \right) = 0\;\;\;\;{\rm{on}}\;\partial \Omega ,}&{}\end{array}} \right. where L is the partial differential operator (1.1) Lux=βˆ’β€‰divπ’œx,u,βˆ‡uΟ‰1+ℬx,u,βˆ‡uΞ½1+β„‹x,u,βˆ‡uΞ½2+ upβˆ’2 u ω2βˆ’βˆ‘i,j=1nDjaijxDiux \begin{array}{*{20}{l}}{Lu\left( x \right) = }&{ - \;{\rm{div}}\left[ {\mathcal{A}\left( {x,u,\nabla u} \right){\omega _1} + {\mathcal{B}}\left( {x,u,\nabla u} \right){\nu _1}} \right] + \mathcal{H}\left( {x,u,\nabla u} \right){\nu _2}}\\{}&{ + \;{{\left| u \right|}^{p - 2}}u{\omega _2} - \sum\limits_{i,j = 1}^n {{D_j}\left( {{a_{ij}}\left( x \right){D_i}u\left( x \right)} \right)} }\end{array} where Dj = βˆ‚/βˆ‚xj, Ξ© is a bounded open set in ℝn, Ο‰1, Ο‰2, Ξ½1 and Ξ½2 are four weight functions (which represent the degeneration or singularity in the equation (1.1)), 1 < q, s < p < ∞ and the functions π’œj : Ω×ℝ×ℝn→ℝ, ℬj : Ω×ℝ×ℝn→ℝ (j = 1, . . . , n) and β„‹: Ω×ℝ×ℝn→ℝ satisfy the following conditions:

  • (H1)

    xβ†¦π’œj(x, Ξ·, ΞΎ) is measurable on Ξ© for all (Ξ·, ΞΎ)βˆˆβ„Γ—β„n, (Ξ·, ΞΎ)β†¦π’œj(x, Ξ·, ΞΎ) is continuous on ℝ×ℝn for almost all x∈Ω.

  • (H2)

    There exists a constant ΞΈ1 > 0 such that π’œx,Ξ·,ΞΎβˆ’π’œx,Ξ·β€²,ΞΎβ€²,ΞΎβˆ’ΞΎβ€²β€‰β‰₯ΞΈ1ΞΎβˆ’ΞΎβ€²p, \left\langle {\mathcal{A}\left( {x,\eta ,\xi } \right) - \mathcal{A}\left( {x,\eta ',\xi '} \right),\left( {\xi - \xi '} \right)} \right\rangle \; \ge {\theta _1}{\left| {\xi - \xi '} \right|^p}, whenever ΞΎ, ΞΎβ€²βˆˆβ„n, ΞΎβ‰ ΞΎβ€², and π’œ(x, Ξ·, ΞΎ) = (π’œ1(x, Ξ·, ΞΎ), . . . ,π’œn(x, Ξ·, ΞΎ)) (where ⟨·, ·⟩ denotes here the Euclidian scalar product in ℝn).

  • (H3)

    βŸ¨π’œ(x, Ξ·, ΞΎ), ξ⟩ β‰₯ Ξ»1|ΞΎ|p, where Ξ»1 is a positive constant.

  • (H4)

    π’œx,Ξ·,ξ≀K1x+h1xΟ‰2xΟ‰1x1/pβ€²Ξ·p/pβ€²+h2xΞΎp/pβ€² \left| {\mathcal{A}\left( {x,\eta ,\xi } \right)} \right| \le {K_1}\left( x \right) + {h_1}\left( x \right){\left( {\frac{{{\omega _2}\left( x \right)}}{{{\omega _1}\left( x \right)}}} \right)^{1/p'}}{\left| \eta \right|^{p/p'}} + {h_2}\left( x \right){\left| \xi \right|^{p/p'}} , where K1, h1 and h2 are nonnegative functions, with h1, h2∈L∞(Ξ©) and K1∈Lpβ€²(Ξ©, Ο‰1) (with 1/p + 1/pβ€² = 1).

  • (H5)

    x↦ℬj(x, Ξ·, ΞΎ) is measurable on Ξ© for all (Ξ·, ΞΎ)βˆˆβ„Γ—β„n, (Ξ·, ΞΎ)↦ℬj(x, Ξ·, ΞΎ) is continuous on ℝ×ℝn for almost all x∈Ω.

  • (H6)

    βŸ¨β„¬(x, Ξ·, ΞΎ) βˆ’ ℬ(x, Ξ·β€², ΞΎβ€²), (ΞΎ βˆ’ ΞΎβ€²)⟩ > 0, whenever ΞΎ, ΞΎβ€²βˆˆβ„n, ΞΎβ‰ ΞΎβ€², where ℬ(x, Ξ·, ΞΎ) = (ℬ1(x, Ξ·, ΞΎ), . . . , ℬn(x, Ξ·, ΞΎ)).

  • (H7)

    βŸ¨β„¬(x, Ξ·, ΞΎ), ξ⟩ β‰₯ Ξ»2|ΞΎ|q + Ξ›2|Ξ·|q, where Ξ»2 > 0 and Ξ›2β‰₯0 are constants.

  • (H8)

    |ℬ(x, Ξ·, ΞΎ)| ≀ K2(x) + g1(x)|Ξ·|q/qβ€² + g2(x)|ΞΎ|q/qβ€², where K2, g1 and g2 are nonnegative functions, with g1 and g2∈L∞(Ξ©), and K2∈Lqβ€² (Ξ©, Ξ½1) (with 1/q + 1/qβ€² = 1).

  • (H9)

    x ↦ℋ(x, Ξ·, ΞΎ) is measurable on Ξ© for all (Ξ·, ΞΎ)βˆˆβ„Γ—β„n, (Ξ·, ΞΎ)↦ℋ(x, Ξ·, ΞΎ) is continuous on ℝ×ℝn for almost all x∈Ω.

  • (H10)

    [β„‹(x, Ξ·, ΞΎ) βˆ’ β„‹(x, Ξ·β€², ΞΎβ€²)](Ξ· βˆ’ Ξ·β€²) > 0, whenever Ξ·, Ξ·β€²βˆˆβ„, Ξ·β‰ Ξ·β€².

  • (H11)

    β„‹(x, Ξ·, ΞΎ)Ξ· β‰₯ Ξ»3|ΞΎ|s + Ξ›3|Ξ·|s, where Ξ»3 and Ξ›3 are nonnegative constants.

  • (H12)

    |β„‹(x, Ξ·, ΞΎ)| ≀ K3(x) + h3(x)|Ξ·|s/sβ€² + h4(x)|ΞΎ|s/sβ€², where K3, h3 and h4 are nonnegative functions, with K3∈Lsβ€² (Ξ©, Ξ½2) (with 1/s + 1/sβ€² = 1), h3 and h4∈L∞(Ξ©).

  • (H13)

    aij : Ω→ℝ are measurable functions, the coefficient matrix β„³(x) = (aij(x)) is symmetric and satisfies the degenerate elliptic condition λν3xΞΎ2β‰€βˆ‘i,j=1naijxΞΎiΞΎj≀Λξ2Ξ½3x \lambda {\nu _3}\left( x \right){\left| \xi \right|^2} \le \sum\limits_{i,j = 1}^n {{a_{ij}}\left( x \right){\xi _i}{\xi _j} \le \Lambda {{\left| \xi \right|}^2}{\nu _3}\left( x \right)} for all ΞΎ βˆˆβ„n and almost every x ∈ Ξ©, Ξ» > 0 and Ξ› > 0 are constants, Ξ½3 is a weight function.

Let Ξ© be a bounded open set in ℝn. By the symbol 𝒲(Ξ©) we denote the set of all measurable a.e. in Ξ© positive and finite functions Ο‰ = Ο‰(x), x ∈ Ξ©. Elements of 𝒲(Ξ©) will be called weight functions. Every weight Ο‰ gives rise to a measure on the measurable subsets of ℝn through integration. This measure will be denoted by ΞΌ. Thus, ΞΌ(E) = ∫E Ο‰(x) dx for measurable sets EβŠ‚β„n.

In general, the Sobolev spaces Wk,p(Ξ©) without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. For degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [3], [4], [5] and [8]). In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration or singularity appears. There are several very concrete problems from practice which lead to such differential equations, e.g. from glaceology, non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics, climatology, petroleum extraction and reaction-diffusion problems (see some examples of applications of degenerate elliptic equations in [2] and [7]).

A class of weights, which is particularly well understood, is the class of Ap-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [15]). These classes have found many useful applications in harmonic analysis (see [17]). Another reason for studying Ap-weights is the fact that powers of distance to submanifolds of ℝn often belong to Ap (see [12]). There are, in fact, many interesting examples of weights (see [11] for p-admissible weights).

The following theorem will be proved in Section 3.

Theorem 1.1.

Let 1 < q, s < p, 2 < p < ∞, and assume (H1)–(H13). If

  • (i)

    Ο‰1, Ο‰2∈Ap, Ξ½1, Ξ½2 and Ξ½3βˆˆπ’²(Ξ©), Ξ½1Ο‰1∈Lr1Ξ©,Ο‰1 \frac{{{\nu _1}}}{{{\omega _1}}} \in {L^{{r_1}}}\left( {\Omega ,{\omega _1}} \right) , Ξ½1Ο‰2∈Lr1Ξ©,Ο‰2 \frac{{{\nu _1}}}{{{\omega _2}}} \in {L^{{r_1}}}\left( {\Omega ,{\omega _2}} \right) , Ξ½2Ο‰1∈Lr2Ξ©,Ο‰1 \frac{{{\nu _2}}}{{{\omega _1}}} \in {L^{{r_2}}}\left( {\Omega ,{\omega _1}} \right) , Ξ½2Ο‰2∈Lr2Ξ©,Ο‰2 \frac{{{\nu _2}}}{{{\omega _2}}} \in {L^{{r_2}}}\left( {\Omega ,{\omega _2}} \right) and Ξ½3Ο‰1∈Lr3Ξ©,Ο‰1 \frac{{{\nu _3}}}{{{\omega _1}}} \in {L^{{r_3}}}\left( {\Omega ,{\omega _1}} \right) , where r1 = p/(p βˆ’ q), r2 = p/(p βˆ’ s) and r3 = 2/(p βˆ’ 2);

  • (ii)

    f0/Ξ½1∈Lqβ€² (Ξ©, Ξ½1) and fj/Ο‰1∈Lpβ€² (Ξ©, Ο‰1) (j = 1, . . . , n);

then the problem (P) has a unique solution u∈W01,pΞ©,Ο‰1,Ο‰2 u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) . Moreover, there is a constant C > 0 such that uW01,pΞ©,Ο‰1,Ο‰2≀CCp,qf0/Ξ½1Lqβ€²Ξ©,Ξ½1+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰11/pβˆ’1, {\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} \le C{\left( {{C_{p,q}}{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right)^{1/\left( {p - 1} \right)}}, where Cp,q is the constant defined in Remark 2.5(i).

The paper is organized as follows. In Section 2 we present the definitions and basic results. In Section 3 we prove our main result about existence and uniqueness of solutions for problem (P).

2.
Definitions and basic results

We recall here some standard notations, properties and results which will be used throughout the paper.

Let Ο‰ be a locally integrable nonnegative function in ℝn and assume that 0 < Ο‰ < ∞ almost everywhere. We say that Ο‰ belongs to the Muckenhoupt class Ap, 1 < p < ∞, or that Ο‰ is an Ap-weight, if there is a constant C = Cp,Ο‰ such that 1B∫BΟ‰xdx1B∫BΟ‰1/1βˆ’pxdxpβˆ’1≀C, \left( {\frac{1}{{\left| B \right|}}\int_B {\omega \left( x \right)dx} } \right){\left( {\frac{1}{{\left| B \right|}}\int_B {{\omega ^{1/\left( {1 - p} \right)}}\left( x \right)dx} } \right)^{p - 1}} \le C, for all balls B βŠ‚ ℝn, where | Β· | denotes the n-dimensional Lebesgue measure in ℝn. If 1 < q ≀ p, then Aq βŠ‚ Ap (see [10], [11] or [17] for more information about Ap-weights). The weight Ο‰ satisfies the doubling condition if there exists a positive constant C such that ΞΌ(B(x; 2r)) ≀ C ΞΌ(B(x; r)), for every ball B = B(x; r) βŠ‚ ℝn, where ΞΌ(B) = ∫B Ο‰(x) dx. If Ο‰βˆˆAp, then ΞΌ is doubling (see Corollary 15.7 in [11]).

As an example of a Ap-weight, the function Ο‰(x) = |x|Ξ±, xβˆˆβ„n, is in Ap if and only if βˆ’n < Ξ± < n(p βˆ’ 1) (see Corollary 4.4, Chapter IX in [17]). Other example, we have Ο‰(x) = |x|Ξ±(max{1, βˆ’ln(|x|)})Ξ² is an A1-weight if and only if βˆ’n < Ξ± < 0 or Ξ± = 0 ≀ Ξ² (see Proposition 7.2 in [1]).

If Ο‰βˆˆAp, then EBp≀CΞΌEΞΌB, {\left( {\frac{{\left| E \right|}}{{\left| B \right|}}} \right)^p} \le C\frac{{\mu \left( E \right)}}{{\mu \left( B \right)}}, whenever B is a ball in ℝn and E is a measurable subset of B (see 15.5 strong doubling property in [11]). Therefore, if ΞΌ(E) = 0 then |E| = 0. The measure ΞΌ and the Lebesgue measure | Β· | are mutually absolutely continuous, i.e., they have the same zero sets (ΞΌ(E) = 0 if and only if |E| = 0); so there is no need to specify the measure when using the ubiquitous expression almost everywhere and almost every, both abbreviated a.e..

In order to discuss the problem (P), we need some elementary results for weighted Lebesgue spaces Lp(Ξ©, Ο‰) and the weighted Sobolev spaces W1,p(Ξ©, Ο‰1, Ο‰2) and W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) .

Definition 2.1.

Let Ο‰ be a weight, and let Ξ© βŠ‚ ℝn be open. For 1 < p < ∞ we define Lp(Ξ©, Ο‰) as the set of measurable functions f on Ξ© such that fLpΞ©,Ο‰=∫Ωfpω dx1/p<∞. {\left\| f \right\|_{{L^p}\left( {\Omega ,\omega } \right)}} = {\left( {\int_\Omega {{{\left| f \right|}^p}\omega \;dx} } \right)^{1/p}} < \infty .

If Ο‰ ∈ Ap, 1 < p < ∞, then Ο‰βˆ’1/(pβˆ’1) is locally integrable and LpΞ©,Ο‰βŠ‚Lloc1Ξ© {L^p}\left( {\Omega ,\omega } \right) \subset L_{{\rm{loc}}}^1\left( \Omega \right) for every open set Ξ© (see Remark 1.2.4 in [18]). It thus makes sense to talk about weak derivatives of functions in Lp(Ξ©, Ο‰).

Definition 2.2.

Let Ξ© βŠ‚ ℝn be a bounded open set and let Ο‰1 and Ο‰2 be Ap-weights (1 < p < ∞).We define the weighted Sobolev space W1,p(Ξ©, Ο‰1, Ο‰2) as the set of functions u ∈ Lp(Ξ©, Ο‰2) with weak derivatives Dju ∈ Lp(Ξ©, Ο‰1). The norm of u in W1,p(Ξ©, Ο‰1, Ο‰2) is defined by (2.1) uW1,pΞ©,Ο‰1,Ο‰2=∫ΩupΟ‰2 dx+βˆ«Ξ©βˆ‡upΟ‰1 dx1/p. {\left\| u \right\|_{{W^{1,p}}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} = {\left( {\int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} + \int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} } \right)^{1/p}}.

The space W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) is the closure of C0∞Ω C_0^\infty \left( \Omega \right) with respect to the norm (2.1). Equipped with this norm, W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) is a reflexive Banach space (see [14] or [16] for more information about the spaces W1,p(Ξ©, Ο‰1, Ο‰2)). The dual of space W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) is the space W01,pΞ©,Ο‰1,Ο‰2*=T=f0βˆ’divF,  F=f1,…,fn:       f0Ο‰2∈Lpβ€²Ξ©,Ο‰2,fjΟ‰1∈Lpβ€²Ξ©,Ο‰1,j=1,…,n}. \begin{array}{*{20}{l}}{{{\left[ {W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right]}^*}}&{ = \left\{ {T = {f_0} - {\rm{div}}\left( F \right),\;F = \left( {{f_1}, \ldots ,{f_n}} \right):} \right.}\\{}&{\;\;\;\;\;\;\;\frac{{{f_0}}}{{{\omega _2}}} \in {L^{p'}}\left( {\Omega ,{\omega _2}} \right),\frac{{{f_j}}}{{{\omega _1}}} \in {L^{p'}}\left( {\Omega ,{\omega _1}} \right),j = 1, \ldots ,n\} .}\end{array}

If T∈W0pΞ©,Ο‰1,Ο‰2* T \in {\left[ {W_0^p\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right]^*} and Ο†βˆˆW01,pΞ©,Ο‰1,Ο‰2 \varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) , we denote   T|Ο†=∫Ωf0 φ dx+βˆ‘j=1nfj Djφ dx,   T*=f0/Ο‰2Lpβ€²Ξ©,Ο‰2+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰1,T|φ≀T*Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{\;\;\left( {T|\varphi } \right) = \int_\Omega {{f_0}\varphi \;dx} + \sum\limits_{j = 1}^n {{f_j}\;{D_j}\varphi \;dx} ,}\\{\;\;\;{{\left\| T \right\|}_*} = {{\left\| {{f_0}/{\omega _2}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} ,}\\{\left| {\left( {T|\varphi } \right)} \right| \le {{\left\| T \right\|}_*}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}

If Ο‰ = Ο‰1 = Ο‰2, we denote W01,pΞ©,Ο‰=W01,pΞ©,Ο‰,Ο‰ W_0^{1,p}\left( {\Omega ,\omega } \right) = W_0^{1,p}\left( {\Omega ,\omega ,\omega } \right) .

In this paper we use the following results.

Theorem 2.1.

Let Ο‰ ∈ Ap, 1 < p < ∞, and let Ξ© be a bounded open set in ℝn. If umβ†’u in Lp(Ξ©, Ο‰) then there exist a subsequence {umk} and a function Ξ¦ ∈ Lp(Ξ©, Ο‰) such that

  • (i)

    umk (x)β†’u(x), mk β†’ ∞ a.e. on Ξ©;

  • (ii)

    |umk (x)| ≀ Ξ¦(x) a.e. on Ξ©.

Proof

The proof of this theorem follows the lines of Theorem 2.8.1 in [13].

Theorem 2.2 (The weighted Sobolev inequality).

Let Ξ© be an open bounded set in ℝn and Ο‰ ∈ Ap (1 < p < ∞). There exist positive constants CΞ© and Ξ΄ such that for all u∈W01,pΞ©,Ο‰ u \in W_0^{1,p}\left( {\Omega ,\omega } \right) and all k satisfying 1 ≀ k ≀ n/(nβˆ’1)+Ξ΄, (2.2) uLkpΞ©,ω≀CΞ©βˆ‡uLpΞ©,Ο‰, {\left\| u \right\|_{{L^{kp}}\left( {\Omega ,\omega } \right)}} \le {C_\Omega }{\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,\omega } \right)}}, where CΞ© depends only on n, p, the Ap-constant C(p, Ο‰) of Ο‰ and the diameter of Ξ©.

Proof

It suffices to prove the inequality for functions u∈C0∞Ω u \in C_0^\infty \left( \Omega \right) (see Theorem 1.3 in [9]). To extend the estimate (2.2) to arbitrary u∈W01,pΞ©,Ο‰ u \in W_0^{1,p}\left( {\Omega ,\omega } \right) , we let {um} be a sequence of C0∞Ω C_0^\infty \left( \Omega \right) functions tending to u in W01,pΞ©,Ο‰ W_0^{1,p}\left( {\Omega ,\omega } \right) . Applying the estimate (2.2) to differences um1 βˆ’ um2 , we see that {um} will be a Cauchy sequence in Lkp(Ξ©, Ο‰). Consequently the limit function u will lie in the desired spaces and satisfy (2.2).

Remark 2.3.

If u∈W01,pΞ©,Ο‰1,Ο‰2 u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) then by Theorem 2.2 (with k = 1) uLpΞ©,Ο‰1≀CΞ©βˆ‡uLpΞ©,Ο‰1≀CΞ©uW01,pΞ©,Ο‰1,Ο‰2. {\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}} \le {C_\Omega }{\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}} \le {C_\Omega }{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}. Hence, W01,pΞ©,Ο‰1,Ο‰2βŠ‚W01,pΞ©,Ο‰1 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \subset W_0^{1,p}\left( {\Omega ,{\omega _1}} \right) .

Proposition 2.4.

Let 1 < p < ∞.

  • (a)

    There exists a constant Cp such that ΞΎ|pβˆ’2ΞΎβˆ’Ξ·|pβˆ’2η≀CpΞΎβˆ’Ξ·ΞΎ+Ξ·pβˆ’2 \left| {\left| {\xi {|^{p - 2}}\xi - } \right|\eta {|^{p - 2}}\eta } \right| \le {C_p}\left| {\xi - \eta } \right|{\left( {\left| \xi \right| + \left| \eta \right|} \right)^{p - 2}} for all ΞΎ, Ξ· ∈ ℝn.

  • (b)

    There exist two positive constants Ξ²p, Ξ³p such that for every x, y βˆˆβ„n Ξ²px+ypβˆ’2xβˆ’y2≀xpβˆ’2xβˆ’ypβˆ’2y),xβˆ’y≀γpx+ypβˆ’2xβˆ’y2. {\beta _p}{\left( {\left| x \right| + \left| y \right|} \right)^{p - 2}}{\left| {x - y} \right|^2} \le \left\langle {{{\left| x \right|}^{p - 2}}x - {{\left| y \right|}^{p - 2}}y),\left( {x - y} \right)} \right\rangle \le {\gamma _p}{\left( {\left| x \right| + \left| y \right|} \right)^{p - 2}}{\left| {x - y} \right|^2}.

Proof

See Proposition 17.2 and Proposition 17.3 in [6].

Definition 2.3.

We say that an element u∈W01,pΞ©,Ο‰1,Ο‰2 u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) is a (weak) solution of problem (P) if βˆ«Ξ©π’œx,u,βˆ‡u,βˆ‡Ο†Ο‰1 dx+βˆ«Ξ©β„¬x,u,βˆ‡u,βˆ‡Ο†Ξ½1 dx          +β€‰βˆ«Ξ©β„‹x,u,βˆ‡uφ ν2 dx+βˆ‘i,j=1n∫ΩaijxDiuxDj φxdx                          +∫Ωupβˆ’2u φ ω2 dx=∫Ωf0 φ dx+βˆ‘j=1n∫Ωfj Dj φ dx, \begin{array}{*{20}{l}}{\int_\Omega {\left\langle {\mathcal{A}\left( {x,u,\nabla u} \right),\nabla \varphi } \right\rangle {\omega _1}\;dx} + \int_\Omega {\left\langle {{\mathcal{B}}\left( {x,u,\nabla u} \right),\nabla \varphi } \right\rangle {\nu _1}\;dx} }\\{\;\;\;\;\;\;\;\;\;\; + \;\int_\Omega {\mathcal{H}\left( {x,u,\nabla u} \right)\varphi \;{\nu _2}\;dx} + \sum\limits_{i,j = 1}^n {} \int_\Omega {{a_{ij}}\left( x \right){D_i}u\left( x \right){D_j}\varphi \left( x \right)dx} }\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \int_\Omega {{{\left| u \right|}^{p - 2}}u\;\varphi \;{\omega _2}\;dx} = \int_\Omega {{f_0}\;\varphi \;dx} + \sum\limits_{j = 1}^n {\int_\Omega {{f_j}\;{D_j}\varphi \;dx} } ,}\end{array} for all Ο†βˆˆW01,pΞ©,Ο‰1,Ο‰2 \varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) .

Remark 2.5.

  • (i)

    If Ξ½1Ο‰1∈Lr1Ξ©,Ο‰1 \frac{{{\nu _1}}}{{{\omega _1}}} \in {L^{{r_1}}}\left( {\Omega ,{\omega _1}} \right) and Ξ½1Ο‰2∈Lr1Ξ©,Ο‰2 \frac{{{\nu _1}}}{{{\omega _2}}} \in {L^{{r_1}}}\left( {\Omega ,{\omega _2}} \right) (where r1 = p/(p βˆ’ q), 1 < q < p < ∞) then uLqΞ©,Ξ½1≀Cp,quLpΞ©,Ο‰1   and   uLqΞ©,Ξ½1≀C˜p,quLpΞ©,Ο‰2, {\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} \le {C_{p,q}}{\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}\;\;\;{\rm{and}}\;\;\;{\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} \le {\tilde C_{p,q}}{\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}}, where Cp,q=Ξ½1/Ο‰1Lr1Ξ©,Ο‰11/q {C_{p,q}} = \left\| {{\nu _1}/{\omega _1}} \right\|_{{L^{{r_1}}}\left( {\Omega ,{\omega _1}} \right)}^{1/q} and C˜p,q=Ξ½1/Ο‰2Lr1Ξ©,Ο‰21/q {\tilde C_{p,q}} = \left\| {{\nu _1}/{\omega _2}} \right\|_{{L^{{r_1}}}\left( {\Omega ,{\omega _2}} \right)}^{1/q} . In fact, by HΓΆlder’s inequality we obtain uLqΞ©,Ξ½1q=∫ΩuqΞ½1 dx=∫ΩuqΞ½1Ο‰1Ο‰1 dxβ‰€βˆ«Ξ©uq p/qΟ‰1 dxq/p∫Ων1/Ο‰1p/pβˆ’qΟ‰1dxpβˆ’q/p=uLpΞ©,Ο‰1qΞ½1/Ο‰1Lr1Ξ©,Ο‰1. \begin{array}{*{20}{l}}{\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^q}&{ = \int_\Omega {{{\left| u \right|}^q}{\nu _1}\;dx} = \int_\Omega {{{\left| u \right|}^q}\frac{{{\nu _1}}}{{{\omega _1}}}{\omega _1}\;dx} }\\{}&{ \le {{\left( {\int_\Omega {{{\left| u \right|}^{q\;p/q}}{\omega _1}\;dx} } \right)}^{q/p}}{{\left( {\int_\Omega {{{\left( {{\nu _1}/{\omega _1}} \right)}^{p/\left( {p - q} \right)}}{\omega _1}dx} } \right)}^{\left( {p - q} \right)/p}}}\\{}&{ = \left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^q{{\left\| {{\nu _1}/{\omega _1}} \right\|}_{{L^{{r_1}}}\left( {\Omega ,{\omega _1}} \right)}}.}\end{array} Hence, uLqΞ©,Ξ½1≀Cp,quLpΞ©,Ο‰1. {\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} \le {C_{p,q}}{\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}.

  • (ii)

    Analogously, if Ξ½2Ο‰1∈Lr2Ξ©,Ο‰1 \frac{{{\nu _2}}}{{{\omega _1}}} \in {L^{{r_2}}}\left( {\Omega ,{\omega _1}} \right) and Ξ½2Ο‰2∈Lr2Ξ©,Ο‰2 \frac{{{\nu _2}}}{{{\omega _2}}} \in {L^{{r_2}}}\left( {\Omega ,{\omega _2}} \right) (where r2 = p/(pβˆ’s), 1 < s < p < ∞) then uLsΞ©,Ξ½2≀Cp,suLpΞ©,Ο‰1   and   uLsΞ©,Ξ½2≀C˜p,suLpΞ©,Ο‰2, {\left\| u \right\|_{{L^s}\left( {\Omega ,{\nu _2}} \right)}} \le {C_{p,s}}{\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}\;\;\;{\rm{and}}\;\;\;{\left\| u \right\|_{{L^s}\left( {\Omega ,{\nu _2}} \right)}} \le {\tilde C_{p,s}}{\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}}, where Cp,s=Ξ½2/Ο‰1Lr2Ξ©,Ο‰11/s {C_{p,s}} = \left\| {{\nu _2}/{\omega _1}} \right\|_{{L^{{r_2}}}\left( {\Omega ,{\omega _1}} \right)}^{1/s} and C˜p,s=Ξ½2/Ο‰2Lr2Ξ©,Ο‰21/s {\tilde C_{p,s}} = \left\| {{\nu _2}/{\omega _2}} \right\|_{{L^{{r_2}}}\left( {\Omega ,{\omega _2}} \right)}^{1/s} .

  • (iii)

    If Ξ½3Ο‰1∈Lr3Ξ©,Ο‰1 \frac{{{\nu _3}}}{{{\omega _1}}} \in {L^{{r_3}}}\left( {\Omega ,{\omega _1}} \right) (where r3 = 2/(p βˆ’ 2), 2 < p < ∞) then uL2Ξ©,Ξ½3≀Cp,2uLpΞ©,Ο‰1, {\left\| u \right\|_{{L^2}\left( {\Omega ,{\nu _3}} \right)}} \le {C_{p,2}}{\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}, where Cp,2=Ξ½3/Ο‰1Lr3Ξ©,Ο‰11/2 {C_{p,2}} = \left\| {{\nu _3}/{\omega _1}} \right\|_{{L^{{r_3}}}\left( {\Omega ,{\omega _1}} \right)}^{1/2} .

3.
Proof of Theorem 1.1

The basic idea is to reduce the problem (P) to an operator equation Au = T and apply the theorem below.

Theorem 3.1.

Let A: Xβ†’Xβˆ— be a monotone, coercive and hemicontinuous operator on the real, separable, reflexive Banach space X. Then the following assertions hold:

  • (a)

    for each T ∈ Xβˆ— the equation Au = T has a solution u∈X;

  • (b)

    if the operator A is strictly monotone, then equation Au = T is uniquely solvable in X.

Proof

See Theorem 26.A in [20].

To prove Theorem 1.1, we define B,B1,B2,B3,B4,B5:W01,pΞ©,Ο‰1,Ο‰2Γ—W01,pΞ©,Ο‰1,Ο‰2→ℝ {\bf{B}},{{\bf{B}}_{\bf{1}}},{{\bf{B}}_{\bf{2}}},{{\bf{B}}_{\bf{3}}},{{\bf{B}}_{\bf{4}}},{{\bf{B}}_{\bf{5}}}:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \times W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to \mathbb{R} by Bu,Ο†=B1u,Ο†+B2u,Ο†+B3u,Ο†+B4u,Ο†+B5u,Ο†,B1u,Ο†=βˆ«Ξ©π’œx,u,βˆ‡u,βˆ‡Ο†Ο‰1 dx,B2u,Ο†=βˆ«Ξ©β„¬x,u,βˆ‡u,βˆ‡Ο†Ξ½1 dx,B3u,Ο†=βˆ«Ξ©β„‹x,u,βˆ‡uφ ν2 dx,B4u,Ο†=∫Ωupβˆ’2u φ ω2 dx,B5u,Ο†=βˆ‘i,j=1n∫ΩaijxDiuxDj φxdx=βˆ«Ξ©β„³xβˆ‡ux,βˆ‡Ο†x dx, \begin{array}{*{20}{l}}{{\bf{B}}\left( {u,\varphi } \right) = {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right),}\\{{{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) = \int_\Omega {\left\langle {\mathcal{A}\left( {x,u,\nabla u} \right),\nabla \varphi } \right\rangle {\omega _1}\;dx} ,}\\{{{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right) = \int_\Omega {\left\langle {{\mathcal{B}}\left( {x,u,\nabla u} \right),\nabla \varphi } \right\rangle {\nu _1}\;dx} ,}\\{{{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right) = \int_\Omega {\mathcal{H}\left( {x,u,\nabla u} \right)\varphi \;{\nu _2}\;dx} ,}\\{{{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right) = \int_\Omega {{{\left| u \right|}^{p - 2}}u\;\varphi \;{\omega _2}\;dx} ,}\\{{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right) = \sum\limits_{i,j = 1}^n {\int_\Omega {{a_{ij}}\left( x \right){D_i}u\left( x \right){D_j}\varphi \left( x \right)dx} } = \int_\Omega {\left\langle {{\mathcal{M}}\left( x \right)\nabla u\left( x \right),\nabla \varphi \left( x \right)} \right\rangle \;dx} ,}\end{array} and T:W01,pΞ©,Ο‰1,Ο‰2→ℝ {\bf{T}}:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to \mathbb{R} by TΟ†=∫Ωf0 φ dx+βˆ‘j=1n∫Ωfj Dj φ dx. {\bf{T}}\left( \varphi \right) = \int_\Omega {{f_0}\;\varphi \;dx} + \sum\limits_{j = 1}^n {\int_\Omega {{f_j}\;{D_j}\varphi \;dx} } . Then u∈W01,pΞ©,Ο‰1,Ο‰2 u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) is a (weak) solution to problem (P) if Bu,Ο†=B1u,Ο†+B2u,Ο†+B3u,Ο†+B4u,Ο†+B5u,Ο†=TΟ†, {\bf{B}}\left( {u,\varphi } \right) = {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right) + {{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right) = {\bf{T}}\left( \varphi \right), for all Ο†βˆˆW01,pΞ©,Ο‰1,Ο‰2 \varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) .

Step 1. For j = 1, . . . , n we define the operator Fj:W01,pΞ©,Ο‰1,Ο‰2β†’Lp'Ξ©,Ο‰1 {F_j}:W_0^{1,p}\left. {\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right) \to {L^{{p^\prime}}}\left( {\Omega ,{\omega _1}} \right) as Fjux=π’œjx,ux,βˆ‡ux. \left( {{F_j}u} \right)\left( x \right) = {\mathcal{A}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right). We now show that the operator Fj is bounded and continuous.

(i) Using (H4), we obtain (3.1) FjuLpβ€²Ξ©,Ο‰1pβ€²=∫ΩFjuxpβ€²Ο‰1 dx=βˆ«Ξ©π’œjx,u,βˆ‡upβ€²Ο‰1 dxβ‰€βˆ«Ξ©K1+h1(Ο‰2/Ο‰1)1/pβ€²up/pβ€²+h2βˆ‡up/pβ€²pβ€²Ο‰1 dx≀Cp∫ΩK1pβ€²Ο‰1 dx+h1L∞Ωpβ€²βˆ«Ξ©upΟ‰2 dx+h2L∞Ωpβ€²βˆ«Ξ©βˆ‡upΟ‰1 dx≀CpK1Lpβ€²Ξ©,Ο‰1pβ€²+h1L∞Ωpβ€²+h2L∞Ωpβ€²uW01,pΞ©,Ο‰1,Ο‰2p, \begin{array}{*{20}{c}}{\left\| {{F_j}u} \right\|_{{L^{{p^\prime}}}\left( {\Omega ,{\omega _1}} \right)}^{{p^\prime}} = \int_\Omega {{{\left| {{F_j}u\left( x \right)} \right|}^{p'}}{\omega _1}\;dx} = \int_\Omega {{{\left| {{\mathcal{A}_j}\left( {x,u,\nabla u} \right)} \right|}^{p'}}{\omega _1}\;dx} }\\{ \le \int_\Omega {{{\left( {{K_1} + {h_1}{{({\omega _2}/{\omega _1})}^{1/p'}}{{\left| u \right|}^{p/p'}} + {h_2}{{\left| {\nabla u} \right|}^{p/p'}}} \right)}^{p'}}{\omega _1}\;dx} }\\{ \le {C_p}\left[ {\int_\Omega {K_1^{p'}{\omega _1}\;dx + \left\| {{h_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'}\int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx + \left\| {{h_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'}} \int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} } } \right]}\\{ \le {C_p}\left[ {\left\| {{K_1}} \right\|_{{L^{{p^\prime}}}\left( {\Omega ,{\omega _1}} \right)}^{{p^\prime}} + \left( {\left\| {{h_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'} + \left\| {{h_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{p'}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p} \right],}\end{array} where the constant Cp depends only on p. Therefore, in (3.1) we obtain FjuLpβ€²Ξ©,Ο‰1≀Cp1/pβ€²K1Lpβ€²Ξ©,Ο‰1+h1L∞Ω+h2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2pβˆ’1. {\left\| {{F_j}u} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} \le C_p^{1/p'}\left( {{{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}} \right).

(ii) Let umβ†’u in W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) as m β†’ ∞. We need to show that Fjumβ†’Fju in Lpβ€² (Ξ©, Ο‰1). We will apply the Lebesgue Dominated Convergence Theorem. If umβ†’u in W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) , then umβ†’u in Lp(Ξ©, Ο‰2) and |βˆ‡um|β†’ |βˆ‡u| in Lp(Ξ©, Ο‰1). Using Theorem 2.1, there exist a subsequence {umk} and functions Ξ¦2 ∈ Lp(Ξ©, Ο‰2), Ξ¦1 ∈ Lp(Ξ©, Ο‰1) such that umkxβ†’ux   a.e. in Ω,umkx≀Φ2x   a.e. in Ω,Djumkxβ†’Djux   a.e. in Ω,βˆ‡umkx≀Φ1x   a.e. in Ω. \begin{array}{*{20}{c}}{{u_{{m_k}}}\left( x \right) \to u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {{u_{{m_k}}}\left( x \right)} \right| \le {\Phi _2}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{{D_j}{u_{{m_k}}}\left( x \right) \to {D_j}u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {\nabla {u_{{m_k}}}\left( x \right)} \right| \le {\Phi _1}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega .}\end{array}

Next, applying (H4) we obtain Fjumkxβˆ’Fjuxpβ€²Ο‰1=β€‰π’œjx,umk,βˆ‡umkβˆ’π’œjx,u,βˆ‡upβ€²Ο‰1≀Cpπ’œjx,umk,βˆ‡umkpβ€²+π’œjx,u,βˆ‡upβ€²Ο‰1≀CpK1+h1Ο‰2/Ο‰11/pβ€²umkp/pβ€²+h2βˆ‡umkp/pβ€²p′   + K1+h1Ο‰2/Ο‰11/pβ€²up/pβ€²+h2βˆ‡up/pβ€²pβ€²Ο‰1≀CpK1pβ€²+h1L∞Ωpβ€²umkpΟ‰2Ο‰1+h2L∞Ωpβ€²βˆ‡umkp   + K1pβ€²+h1L∞Ωpβ€²upΟ‰2Ο‰1+h2L∞Ωpβ€²βˆ‡upΟ‰1≀CpK1pβ€²+h1L∞Ωpβ€²Ξ¦2pΟ‰2Ο‰1+h2L∞Ωpβ€²Ξ¦1p   + K1pβ€²+h1L∞Ωpβ€²Ξ¦2pΟ‰2Ο‰1+h2L∞Ωpβ€²Ξ¦1pΟ‰1=2CpK1pβ€²Ο‰1+h1L∞Ωpβ€²Ξ¦2pΟ‰2+h2L∞Ωpβ€²Ξ¦1pΟ‰1∈L1Ξ©. \begin{array}{*{35}{l}} {{\left| {{F}_{j}}{{u}_{{{m}_{k}}}}\left( x \right)-{{F}_{j}}u\left( x \right) \right|}^{{{p}'}}}{{\omega }_{1}} & =\ {{\left| {{\mathcal{A}}_{j}}\left( x,{{u}_{{{m}_{k}}}},\nabla {{u}_{{{m}_{k}}}} \right)-{{\mathcal{A}}_{j}}\left( x,u,\nabla u \right) \right|}^{{{p}'}}}{{\omega }_{1}} \\ {} & \le {{C}_{p}}\left( {{\left| {{\mathcal{A}}_{j}}\left( x,{{u}_{{{m}_{k}}}},\nabla {{u}_{{{m}_{k}}}} \right) \right|}^{{{p}'}}}+{{\left| {{\mathcal{A}}_{j}}\left( x,u,\nabla u \right) \right|}^{{{p}'}}} \right){{\omega }_{1}} \\ {} & \le {{C}_{p}}\left[ {{\left( {{K}_{1}}+{{h}_{1}}{{\left( {{\omega }_{2}}/{{\omega }_{1}} \right)}^{1/{p}'}}{{\left| {{u}_{{{m}_{k}}}} \right|}^{p/{p}'}}+{{h}_{2}}{{\left| \nabla {{u}_{{{m}_{k}}}} \right|}^{p/{p}'}} \right)}^{{{p}'}}} \right. \\ {} & \left. \ \ \ +\ {{\left( {{K}_{1}}+{{h}_{1}}{{\left( {{\omega }_{2}}/{{\omega }_{1}} \right)}^{1/{p}'}}{{\left| u \right|}^{p/{p}'}}+{{h}_{2}}{{\left| \nabla u \right|}^{p/{p}'}} \right)}^{{{p}'}}} \right]{{\omega }_{1}} \\ {} & \le {{C}_{p}}\left[ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| {{u}_{{{m}_{k}}}} \right|}^{p}}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| \nabla {{u}_{{{m}_{k}}}} \right|}^{p}} \right) \right. \\ {} & \left. \ \ \ +\ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| u \right|}^{p}}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}{{\left| \nabla u \right|}^{p}} \right. \right]{{\omega }_{1}} \\ {} & \le {{C}_{p}}\left[ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{2}^{p}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{1}^{p} \right) \right. \\ {} & \ \ \ \left. +\ \left( K_{1}^{{{p}'}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{2}^{p}\frac{{{\omega }_{2}}}{{{\omega }_{1}}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{1}^{p} \right) \right]{{\omega }_{1}} \\ {} & =2{{C}_{p}}\left[ K_{1}^{{{p}'}}{{\omega }_{1}}+\left\| {{h}_{1}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{2}^{p}{{\omega }_{2}}+\left\| {{h}_{2}} \right\|_{{{L}^{\infty }}\left( \Omega \right)}^{{{p}'}}\Phi _{1}^{p}{{\omega }_{1}} \right]\in {{L}^{1}}\left( \Omega \right). \\ \end{array} By condition (H1), we have Fjumkx=π’œjx,umkx,βˆ‡umkxβ†’π’œjx,ux,βˆ‡ux=Fjux, {F_j}{u_{{m_k}}}\left( x \right) = {\mathcal{A}_j}\left( {x,{u_{{m_k}}}\left( x \right),\nabla {u_{{m_k}}}\left( x \right)} \right) \to {\mathcal{A}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right) = {F_j}u\left( x \right), as mk β†’ +∞. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain β€–Fjumk βˆ’ Fjuβ€–Lpβ€²(Ξ©,Ο‰1) β†’ 0, that is, Fjumk β†’ Fju in Lpβ€² (Ξ©, Ο‰1). We conclude from the Convergence Principle in Banach spaces (see Proposition 10.13 in [19]) that (3.2) Fjumβ†’Fju   in   Lpβ€²Ξ©,Ο‰1. {F_j}{u_m} \to {F_j}u\;\;\;{\rm{in}}\;\;\;{L^{p'}}\left( {\Omega ,{\omega _1}} \right).

Step 2. We define the operator Gj:W01,pΞ©,Ο‰1,Ο‰2β†’Lqβ€²Ξ©,Ξ½1 {G_j}:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {L^{q'}}\left( {\Omega ,{\nu _1}} \right) by Gjux=ℬjx,ux,βˆ‡ux. \left( {{G_j}u} \right)\left( x \right) = {\mathcal{B}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right). This operator is continuous and bounded. In fact:

(i) Using (H8), Remark 2.5(i) and Theorem 2.2 (since Ο‰1 ∈ Ap) we obtain GjuLqβ€²Ξ©,Ξ½1qβ€²=∫ΩGjuxqβ€²Ξ½1 dx=βˆ«Ξ©β„¬jx,u,βˆ‡uqβ€²Ξ½1 dxβ‰€βˆ«Ξ©K2+g1uq/qβ€²+g2βˆ‡uq/qβ€²qβ€²Ξ½1 dx≀Cq∫ΩK2qβ€²+g1qβ€²uq+g2qβ€²βˆ‡uqΞ½1dx=Cq∫ΩK2qβ€²Ξ½1 dx+∫Ωg1qβ€²uqΞ½1 dx+∫Ωg2qβ€²βˆ‡uqΞ½1 dx≀CqK2Lqβ€²Ξ©,Ξ½1qβ€²+g1L∞Ωqβ€²uLqΞ©,Ξ½1q+g2L∞Ωqβ€²βˆ‡uLqΞ©,Ξ½1q≀CqK2Lqβ€²Ξ©,Ξ½1qβ€²+g1L∞Ωqβ€²Cp,qquLpΞ©,Ο‰1q   + Cp,qqg2L∞Ωqβ€²βˆ‡uLpΞ©,Ο‰1q≀CqK2Lqβ€²Ξ©,Ξ½1qβ€²+Cp,qqCΞ©qg1L∞Ωqβ€²+g2L∞Ωqβ€²uW01,pΞ©,Ο‰1,Ο‰2q, \begin{array}{*{20}{l}}{\left\| {{G_j}u} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'}}&{ = \int_\Omega {{{\left| {{G_j}u\left( x \right)} \right|}^{q'}}{\nu _1}\;dx} = \int_\Omega {{{\left| {{\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|}^{q'}}{\nu _1}\;dx} }\\{}&{ \le \int_\Omega {{{\left( {{K_2} + {g_1}{{\left| u \right|}^{q/q'}} + {g_2}{{\left| {\nabla u} \right|}^{q/q'}}} \right)}^{q'}}{\nu _1}\;dx} }\\{}&{ \le {C_q}\int_\Omega {\left[ {\left( {K_2^{q'} + g_1^{q'}{{\left| u \right|}^q} + g_2^{q'}{{\left| {\nabla u} \right|}^q}} \right){\nu _1}} \right]dx} }\\{}&{ = {C_q}\left[ {\int_\Omega {K_2^{q'}{\nu _1}\;dx} + \int_\Omega {g_1^{q'}{{\left| u \right|}^q}{\nu _1}\;dx} + \int_\Omega {g_2^{q'}{{\left| {\nabla u} \right|}^q}{\nu _1}\;dx} } \right]}\\{}&{ \le {C_q}\left( {\left\| {{K_2}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^q + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\left\| {\left| {\nabla u} \right|} \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^q} \right)}\\{}&{ \le {C_q}\left( {\left\| {{K_2}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}C_{p,q}^q\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^q} \right.}\\{}&{\left. {\;\;\; + \;C_{p,q}^q\left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^q} \right)}\\{}&{ \le {C_q}\left( {\left\| {{K_2}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}^{q'} + C_{p,q}^q\left( {C_\Omega ^q\left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^q} \right),}\end{array} where the constant Cq depends only on q. Therefore, we obtain GjuLqβ€²Ξ©,Ξ½1≀Cq1/qβ€²K2Lqβ€²Ξ©,Ξ½1   + Cp,qqβˆ’1CΞ©qβˆ’1g1L∞Ω+g2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2qβˆ’1. \begin{array}{*{20}{l}}{{{\left\| {{G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu_1}} \right)}}}&{ \le C_q^{1/q'}\left( {{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} \right.}\\{}&{\left. {\;\;\; + \;C_{p,q}^{q - 1}\left( {C_\Omega ^{q - 1}{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}} \right).}\end{array}

(ii) Let umβ†’u in W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) as m β†’ ∞. We need to show that Gjumβ†’Gju in Lqβ€² (Ξ©, Ξ½1). We will apply the Lebesgue Dominated Theorem. If umβ†’u in W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) , then umβ†’u in Lp(Ξ©, Ο‰2 and |βˆ‡um|β†’ |βˆ‡u| in Lp(Ξ©, Ο‰1). Analogously to Step 1(ii), there exist a subsequence {umk} and functions Ξ¦2∈Lp(Ξ©, Ο‰2) and Ξ¦1∈Lp(Ξ©, Ο‰1) such that umkxβ†’ux   a.e. in Ω,umkx≀Φ2x   a.e. in Ω,Djumkxβ†’Djux   a.e. in Ω,βˆ‡umkx≀Φ1x   a.e. in Ω. \begin{array}{*{20}{c}}{{u_{{m_k}}}\left( x \right) \to u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {{u_{{m_k}}}\left( x \right)} \right| \le {\Phi _2}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{{D_j}{u_{{m_k}}}\left( x \right) \to {D_j}u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {\nabla {u_{{m_k}}}\left( x \right)} \right| \le {\Phi _1}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega .}\end{array} Next, applying (H8) and Remark 2.5(i) we obtain Gjumkxβˆ’Gjuxqβ€²Ξ½1=ℬjx,umk,βˆ‡umkβˆ’β„¬jx,u,βˆ‡uqβ€²Ξ½1≀Cqℬjx,umk,βˆ‡umkqβ€²+ℬjx,u,βˆ‡uqβ€²Ξ½1≀CqK2+g1umkq/qβ€²+g2βˆ‡umkq/qβ€²q′   + K2+g1uq/qβ€²+g2βˆ‡uq/qβ€²qβ€²Ξ½1≀CqK2qβ€²+g1L∞Ωqβ€²umkq+g2L∞Ωqβ€²βˆ‡umkq   + K2qβ€²+g1L∞Ωqβ€²uq+g2L∞Ωqβ€²βˆ‡uqΞ½1≀2CqK2qβ€²Ξ½1+g1L∞Ωqβ€²Ξ¦2qΞ½1+g2L∞Ωqβ€²Ξ¦1qΞ½1∈L1Ξ©, \begin{array}{*{20}{l}}{{{\left| {{G_j}{u_{{m_k}}}\left( x \right) - {G_j}u\left( x \right)} \right|}^{q'}}{\nu _1}}&{ = {{\left| {{\mathcal{B}_j}\left( {x,{u_{{m_k}}},\nabla {u_{{m_k}}}} \right) - {\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|}^{q'}}{\nu _1}}\\{}&{ \le {C_q}\left[ {{{\left| {{\mathcal{B}_j}\left( {x,{u_{{m_k}}},\nabla {u_{{m_k}}}} \right)} \right|}^{q'}} + {{\left| {{\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|}^{q'}}} \right]{\nu _1}}\\{}&{ \le {C_q}\left[ {{{\left( {{K_2} + {g_1}{{\left| {{u_{{m_k}}}} \right|}^{q/q'}} + {g_2}{{\left| {\nabla {u_{{m_k}}}} \right|}^{q/q'}}} \right)}^{q'}}} \right.}\\{}&{\left. {\;\;\; + \;{{\left( {{K_2} + {g_1}{{\left| u \right|}^{q/q'}} + {g_2}{{\left| {\nabla u} \right|}^{q/q'}}} \right)}^{q'}}} \right]{\nu _1}}\\{}&{ \le {C_q}\left[ {\left( {K_2^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| {{u_{{m_k}}}} \right|}^q} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| {\nabla {u_{{m_k}}}} \right|}^q}} \right)} \right.}\\{}&{\;\;\;\left. { + \;\left( {K_2^{q'} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| u \right|}^q} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}{{\left| {\nabla u} \right|}^q}} \right)} \right]{\nu _1}}\\{}&{ \le 2{C_q}\left[ {K_2^{q'}{\nu _1} + \left\| {{g_1}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\Phi _2^q{\nu _1} + \left\| {{g_2}} \right\|_{{L^\infty }\left( \Omega \right)}^{q'}\Phi _1^q{\nu _1}} \right] \in {L^1}\left( \Omega \right),}\end{array} since ∫ΩΦ1qΞ½1 dx≀Cp,qq∫ΩΦ1pΟ‰1 dx \int_\Omega {\Phi _1^q{\nu _1}\;dx} \le C_{p,q}^q\int_\Omega {\Phi _1^p{\omega _1}\;dx} and ∫ΩΦ2qΞ½1 dx≀C˜p,qq∫ΩΦ2pΟ‰2 dx \int_\Omega {\Phi _2^q{\nu _1}\;dx} \le \tilde C_{p,q}^q\int_\Omega {\Phi _2^p{\omega _2}\;dx} . By condition (H5), we have Gjumkx=ℬjx,umkx,βˆ‡umkx→ℬjx,ux,βˆ‡ux=Gjux, {G_j}{u_{{m_k}}}\left( x \right) = {\mathcal{B}_j}\left( {x,{u_{{m_k}}}\left( x \right),\nabla {u_{{m_k}}}\left( x \right)} \right) \to {\mathcal{B}_j}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right) = {G_j}u\left( x \right), as mk β†’ +∞. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain Gjumkβˆ’GjuLqβ€²Ξ©,Ξ½1β†’0, {\left\| {{G_j}{u_{{m_k}}} - {G_j}u} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} \to 0, that is, Gjumkβ†’Gju   in Lqβ€²Ξ©,Ξ½1. {G_j}{u_{{m_k}}} \to {G_j}u\;\;\;{\rm{in}}\;{L^{q'}}\left( {\Omega ,{\nu _1}} \right). We conclude from the Convergence Principle in Banach spaces (see Proposition 10.13 in [19]) that (3.3) Gjumβ†’Gju  in Lqβ€²Ξ©,Ξ½1. {G_j}{u_m} \to {G_j}u\;\;{\rm{in}}\;{L^{q'}}\left( {\Omega ,{\nu _1}} \right).

Step 3. We define the operator H:W01,pΞ©,Ο‰1,Ο‰2β†’Lsβ€²Ξ©,Ξ½2 H:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {L^{s'}}\left( {\Omega ,{\nu _2}} \right) by Hux=β„‹x,ux,βˆ‡ux. \left( {Hu} \right)\left( x \right) = \mathcal{H}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right). We also have that the operator H is continuous and bounded. In fact:

(i) Using (H12), Remark 2.5(ii) and Theorem 2.2 we obtain HuLsβ€²Ξ©,Ξ½2sβ€²=∫ΩHusβ€²Ξ½2 dx=βˆ«Ξ©β„‹x,u,βˆ‡usβ€²Ξ½2 dxβ‰€βˆ«Ξ©(K3+h3us/sβ€²+h4βˆ‡us/sβ€²)sβ€²Ξ½2 dx≀Cs∫ΩK3sβ€²+h3sβ€²us+h4sβ€²βˆ‡usΞ½2 dx≀Cs∫ΩK3s′ ν2 dx+h3L∞Ωsβ€²βˆ«Ξ©usΞ½2 dx+h4L∞Ωsβ€²βˆ«Ξ©βˆ‡usΞ½2 dx≀CsK3Lsβ€²Ξ©,Ξ½2sβ€²+h3L∞Ωsβ€²Cp,ssuLpΞ©,Ο‰1s   + h4L∞Ωsβ€²Cp,ssβˆ‡uLpΞ©,Ο‰1s≀CsK3Lsβ€²Ξ©,Ξ½2sβ€²+h3L∞Ωsβ€²Cp,ssCΞ©sβˆ‡uLpΞ©,Ο‰1s   + h4L∞Ωsβ€²Cp,ssβˆ‡uLpΞ©,Ο‰1s≀CsK3Lsβ€²Ξ©,Ξ½2sβ€²+Cp,ssCΞ©sh3L∞Ωsβ€²+h4L∞Ωsβ€²uW01,pΞ©,Ο‰1,Ο‰2s, \begin{array}{*{20}{l}}{\left\| {Hu} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'}}&{ = \int_\Omega {{{\left| {Hu} \right|}^{s'}}{\nu _2}\;dx} = \int_\Omega {{{\left| {\mathcal{H}\left( {x,u,\nabla u} \right)} \right|}^{s'}}{\nu _2}\;dx} }\\{}&{ \le \int_\Omega {{{({K_3} + {h_3}{{\left| u \right|}^{s/s'}} + {h_4}{{\left| {\nabla u} \right|}^{s/s'}})}^{s'}}{\nu _2}\;dx} }\\{}&{ \le {C_s}\int_\Omega {\left( {K_3^{s'} + h_3^{s'}{{\left| u \right|}^s} + h_4^{s'}{{\left| {\nabla u} \right|}^s}} \right){\nu _2}\;dx} }\\{}&{ \le {C_s}\left[ {\int_\Omega {K_3^{s'}\;{\nu _2}\;dx + \left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}\int_\Omega {{{\left| u \right|}^s}{\nu _2}\;dx + \left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}\int_\Omega {{{\left| {\nabla u} \right|}^s}{\nu _2}\;dx} } } } \right]}\\{}&{ \le {C_s}\left( {\left\| {{K_3}} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'} + \left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^s\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right.}\\{}&{\left. {\;\;\; + \;\left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^s\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right)}\\{}&{ \le {C_s}\left( {\left\| {{K_3}} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'} + \left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^sC_\Omega ^s\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right.}\\{}&{\left. {\;\;\; + \;\left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}C_{p,s}^s\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^s} \right)}\\{}&{ \le {C_s}\left( {\left\| {{K_3}} \right\|_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}^{s'} + C_{p,s}^s\left( {C_\Omega ^s\left\| {{h_3}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'} + \left\| {{h_4}} \right\|_{{L^\infty }\left( \Omega \right)}^{s'}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^s} \right),}\end{array} where the constant Cs depends only on s. Hence, we obtain HuLsβ€²Ξ©,Ξ½2≀CsK3Lsβ€²Ξ©,Ξ½2   + Cp,ssβˆ’1CΞ©sβˆ’1h3L∞Ω+h4L∞ΩuW01,pΞ©,Ο‰1,Ο‰2sβˆ’1. \begin{array}{*{20}{l}}{{{\left\| {Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}}&{ \le {C_s}\left[ {{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}} \right.}\\{}&{\;\;\;\left. { + \;C_{p,s}^{s - 1}\left( {C_\Omega ^{s - 1}{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}} \right].}\end{array}

(ii) Applying (H12) and Remark 2.5(ii), by the same argument used in Step 2(ii), we obtain analogously, if umβ†’u in W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) then (3.4) Humβ†’Hu   in   Lsβ€²Ξ©,Ξ½2. H{u_m} \to Hu\;\;\;{\rm{in}}\;\;\;{L^{s'}}\left( {\Omega ,{\nu _2}} \right).

Step 4. We define the operator J:W01,pΞ©,Ο‰1,Ο‰2β†’Lpβ€²Ξ©,Ο‰2 J:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {L^{p'}}\left( {\Omega ,{\omega _2}} \right) by Jux=uxpβˆ’2ux. \left( {Ju} \right)\left( x \right) = {\left| {u\left( x \right)} \right|^{p - 2}}u\left( x \right). We also have that the operator J is continuous and bounded. In fact:

(i) For all u∈W01,pΞ©,Ο‰1,Ο‰2 u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) , JuLpβ€²Ξ©,Ο‰2pβ€²=∫ΩJupβ€²Ο‰2 dx=∫Ωupβˆ’1pβ€²Ο‰2 dx=∫ΩupΟ‰2 dx≀uW01,pΞ©,Ο‰1,Ο‰2p. \begin{array}{*{20}{l}}{\left\| {Ju} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}^{p'}}&{ = \int_\Omega {{{\left| {Ju} \right|}^{p'}}{\omega _2}dx} = \int_\Omega {{{\left| u \right|}^{\left( {p - 1} \right)p'}}{\omega _2}dx} }\\{}&{ = \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx \le \left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p} .}\end{array} Hence, JuLpβ€²Ξ©,Ο‰2≀uW01,pΞ©,Ο‰1,Ο‰2pβˆ’1 {\left\| {Ju} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}} \le \left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1} .

(ii) Let umβ†’u in W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) . Then umβ†’u in Lp(Ξ©, Ο‰2). Using Theorem 2.1, there exist a subsequence {umk} and a function Ξ¦2 ∈ Lp(Ξ©, Ο‰2) such that umkxβ†’ux   a.e. in Ω,umkx≀Φ2x   a.e. in Ω. \begin{array}{*{20}{c}}{{u_{{m_k}}}\left( x \right) \to u\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega ,}\\{\left| {{u_{{m_k}}}\left( x \right)} \right| \le {\Phi _2}\left( x \right)\;\;\;{\rm{a.e.}}\;{\rm{in}}\;\Omega .}\end{array} Next, applying Proposition 2.4(a), we have Jumkβˆ’JuLpβ€²Ξ©,Ο‰2pβ€²=∫ΩJumkβˆ’Jupβ€²Ο‰2 dx=∫Ωumkpβˆ’2umkβˆ’upβˆ’2upβ€²Ο‰2 dxβ‰€βˆ«Ξ©Cpumkβˆ’uumk+upβˆ’2pβ€²Ο‰2 dx=Cppβ€²βˆ«Ξ©umkβˆ’upβ€²umk+upβˆ’2pβ€²Ο‰2 dx≀2pβˆ’2pβ€²Cppβ€²βˆ«Ξ©umkβˆ’upβ€²Ξ¦2pβˆ’2pβ€²Ο‰2 dx≀2pβˆ’2pβ€²Cppβ€²βˆ«Ξ©umkβˆ’upβ€²p/pβ€²Ο‰2 dxpβ€²/pβ€‰β€‰β€‰Γ—β€‰βˆ«Ξ©Ξ¦2pβˆ’2pβ€²p/pβˆ’pβ€²Ο‰2dxpβˆ’pβ€²/p=2pβˆ’2pβ€²Cppβ€²βˆ«Ξ©umkβˆ’upΟ‰2 dxpβ€²/p∫ΩΦ2pΟ‰2 dxpβˆ’pβ€²/p=2pβˆ’2pβ€²Cppβ€²umkβˆ’uLpΞ©,Ο‰2pβ€²Ξ¦2LpΞ©,Ο‰2pβˆ’pβ€². \begin{array}{*{20}{l}}{\left\| {J{u_{{m_k}}} - Ju} \right\|_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}^{p'}}&{ = \int_\Omega {{{\left| {J{u_{{m_k}}} - Ju} \right|}^{p'}}{\omega _2}\;dx} }\\{}&{ = \int_\Omega {{{\left| {{{\left| {{u_{{m_k}}}} \right|}^{p - 2}}{u_{{m_k}}} - {{\left| u \right|}^{p - 2}}u} \right|}^{p'}}{\omega _2}\;dx} }\\{}&{ \le \int_\Omega {{{\left[ {{C_p}\left| {{u_{{m_k}}} - u} \right|{{\left( {\left| {{u_{{m_k}}}} \right| + \left| u \right|} \right)}^{p - 2}}} \right]}^{p'}}{\omega _2}\;dx} }\\{}&{ = C_p^{p'}\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^{p'}}{{\left( {\left| {{u_{{m_k}}}} \right| + \left| u \right|} \right)}^{\left( {p - 2} \right)p'}}{\omega _2}\;dx} }\\{}&{ \le {2^{\left( {p - 2} \right)p'}}C_p^{p'}\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^{p'}}\Phi _2^{\left( {p - 2} \right)p'}{\omega _2}\;dx} }\\{}&{ \le {2^{\left( {p - 2} \right)p'}}C_p^{p'}{{\left( {\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^{p'\left( {p/p'} \right)}}{\omega _2}\;dx} } \right)}^{p'/p}}}\\{}&{ \times \;{{\left( {\int_\Omega {\Phi _2^{\left( {p - 2} \right)p'p/\left( {p - p'} \right)}{\omega _2}dx} } \right)}^{\left( {p - p'} \right)/p}}}\\{}&{ = {2^{\left( {p - 2} \right)p'}}C_p^{p'}{{\left( {\int_\Omega {{{\left| {{u_{{m_k}}} - u} \right|}^p}{\omega _2}\;dx} } \right)}^{p'/p}}{{\left( {\int_\Omega {\Phi _2^p{\omega _2}\;dx} } \right)}^{\left( {p - p'} \right)/p}}}\\{}&{ = {2^{\left( {p - 2} \right)p'}}C_p^{p'}\left\| {{u_{{m_k}}} - u} \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}^{p'}\left\| {{\Phi _2}} \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}^{p - p'}.}\end{array} Hence β€–Jumk βˆ’ Juβ€–Lpβ€²(Ξ©,Ο‰2)β†’0 as mkβ†’βˆž. We conclude from the Convergence Principle in Banach spaces that (3.5) Jumβ†’Ju   in   Lpβ€²Ξ©,Ο‰2. J{u_m} \to Ju\;\;\;{\rm{in}}\;\;\;{L^{p'}}\left( {\Omega ,{\omega _2}} \right).

Step 5. By (H13) and Remark 2.5(iii) we obtain B5u,Ο†β‰€βˆ«Ξ©β„³xβˆ‡ux,βˆ‡Ο†xdxβ‰€βˆ«Ξ©β„³xβˆ‡ux,βˆ‡ux1/2β„³xβˆ‡Ο†x,βˆ‡Ο†x1/2dxβ‰€βˆ«Ξ©β„³xβˆ‡ux,βˆ‡uxdx1/2βˆ«Ξ©β„³xβˆ‡Ο†x,βˆ‡Ο†xdx1/2β‰€βˆ«Ξ©Ξ›βˆ‡ux2Ξ½3 dx1/2βˆ«Ξ©Ξ›βˆ‡Ο†x2Ξ½3dx1/2=Ξ›βˆ‡uL2Ξ©,Ξ½3βˆ‡Ο†xL2Ξ©,Ξ½3≀ΛCp,22βˆ‡uLpΞ©,Ο‰1βˆ‡Ο†xLpΞ©,Ο‰1≀ΛCp,22uW01,pΞ©,Ο‰1,Ο‰2Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right|}&{ \le \int_\Omega {\left| {\left\langle {{\mathcal{M}}\left( x \right)\nabla u\left( x \right),\nabla \varphi \left( x \right)} \right\rangle } \right|dx} }\\{}&{ \le \int_\Omega {{{\left\langle {\mathcal{M}\left( x \right)\nabla u\left( x \right),\nabla u\left( x \right)} \right\rangle }^{1/2}}{{\left\langle {\mathcal{M}\left( x \right)\nabla \varphi \left( x \right),\nabla \varphi \left( x \right)} \right\rangle }^{1/2}}dx} }\\{}&{ \le {{\left( {\int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla u\left( x \right),\nabla u\left( x \right)} \right\rangle dx} } \right)}^{1/2}}{{\left( {\int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla \varphi \left( x \right),\nabla \varphi \left( x \right)} \right\rangle dx} } \right)}^{1/2}}}\\{}&{ \le {{\left( {\int_\Omega {\Lambda {{\left| {\nabla u\left( x \right)} \right|}^2}{\nu _3}\;dx} } \right)}^{1/2}}{{\left( {\int_\Omega {\Lambda {{\left| {\nabla \varphi \left( x \right)} \right|}^2}{\nu _3}dx} } \right)}^{1/2}}}\\{}&{ = \Lambda {{\left\| {\left| {\nabla u} \right|} \right\|}_{{L^2}\left( {\Omega ,{\nu _3}} \right)}}{{\left\| {\left| {\nabla \varphi \left( x \right)} \right|} \right\|}_{{L^2}\left( {\Omega ,{\nu _3}} \right)}}}\\{}&{ \le \Lambda C_{p,2}^2{{\left\| {\left| {\nabla u} \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}{{\left\| {\left| {\nabla \varphi \left( x \right)} \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \Lambda C_{p,2}^2{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array}

Step 6. Since f0Ξ½1∈Lqβ€²Ξ©,Ξ½1 \frac{{{f_0}}}{{{\nu _1}}} \in {L^{q'}}\left( {\Omega ,{\nu _1}} \right) and fjΟ‰1∈Lpβ€²Ξ©,Ο‰1j=1,…,n \frac{{{f_j}}}{{{\omega _1}}} \in {L^{p'}}\left( {\Omega ,{\omega _1}} \right)\left( {j = 1, \ldots ,n} \right) then T∈W01,pΞ©,Ο‰1,Ο‰2* {\bf{T}} \in {\left[ {W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right]^*} . Moreover, by Remark 2.5(i), we have TΟ†β‰€βˆ«Ξ©f0Ο†dx+βˆ‘j=1n∫ΩfjDjΟ†dx=∫Ωf0Ξ½1φν1 dx+βˆ‘j=1n∫ΩfjΟ‰1Djφω1 dx≀f0/Ξ½1Lqβ€²Ξ©,Ξ½1Ο†LqΞ©,Ξ½1+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰1βˆ‡Ο†LpΞ©,Ο‰1≀Cp,qf0/Ξ½1Lqβ€²Ξ©,Ξ½1+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰1Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{\left| {{\bf{T}}\left( \varphi \right)} \right|}&{ \le \int_\Omega {\left| {{f_0}} \right|\left| \varphi \right|dx} + \sum\limits_{j = 1}^n {\int_\Omega {\left| {{f_j}} \right|\left| {{D_j}\varphi } \right|dx} } }\\{}&{ = \int_\Omega {\frac{{\left| {{f_0}} \right|}}{{{\nu _1}}}\left| \varphi \right|{\nu _1}\;dx} + \sum\limits_{j = 1}^n {\int_\Omega {\frac{{\left| {{f_j}} \right|}}{{{\omega _1}}}\left| {{D_j}\varphi } \right|{\omega _1}\;dx} } }\\{}&{ \le {{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| \varphi \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} + \left( {\sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {{C_{p,q}}{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array} Moreover, we also have (3.6) Bu,φ≀B1u,Ο†+B2u,Ο†+B3u,Ο†+B4u,Ο†+B5u,Ο†β‰€βˆ«Ξ©π’œx,u,βˆ‡uβˆ‡Ο†Ο‰1 dx+βˆ«Ξ©β„¬x,u,βˆ‡uβˆ‡Ο†Ξ½1 dx+β€‰βˆ«Ξ©β„‹x,u,βˆ‡uφν2+∫Ωupβˆ’1φω2 dx+β€‰βˆ«Ξ©β„³xβˆ‡u,βˆ‡Ο†dx. \begin{array}{*{20}{l}}{\left| {{\bf{B}}\left( {u,\varphi } \right)} \right|}&{ \le {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right) + \left| {{{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right)} \right| + \left| {{B_3}\left( {u,\varphi } \right)} \right| + \left| {{{\bf{B}}_{\bf{4}}}\left( {u,\varphi } \right)} \right| + \left| {{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right|}\\{}&{ \le \int_\Omega {\left| {\mathcal{A}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\omega _1}dx} + \int_\Omega {\left| {\mathcal{B}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\nu _1}\;dx} }\\{}&{ + \;\int_\Omega {\left| {\mathcal{H}\left( {x,u,\nabla u} \right)} \right|\left| \varphi \right|{\nu _2}} + \int_\Omega {{{\left| u \right|}^{p - 1}}\left| \varphi \right|{\omega _2}\;dx} }\\{}&{ + \;\int_\Omega {\left| {\left\langle {{\mathcal{M}}\left( x \right)\nabla u,\nabla \varphi } \right\rangle } \right|dx} .}\end{array} In (3.6) we have, by (H4), βˆ«Ξ©π’œx,u,βˆ‡uβˆ‡Ο†Ο‰1 dxβ‰€βˆ«Ξ©K1+h1Ο‰2Ο‰11/pβ€²up/pβ€²+h2βˆ‡up/pβ€²βˆ‡Ο†Ο‰1 dxβ‰€βˆ«Ξ©K1βˆ‡Ο†Ο‰1 dx+h1LβˆžΞ©βˆ«Ξ©Ο‰2Ο‰11/pβ€²up/pβ€²βˆ‡Ο†Ο‰1 dx   + h2LβˆžΞ©βˆ«Ξ©βˆ‡up/pβ€²βˆ‡Ο†Ο‰1 dx≀K1Lpβ€²Ξ©,Ο‰1βˆ‡Ο†LpΞ©,Ο‰1+h1L∞ΩuLpΞ©,Ο‰2pβˆ’1βˆ‡Ο†LpΞ©,Ο‰1   + h2LβˆžΞ©βˆ‡uLpΞ©,Ο‰1pβˆ’1βˆ‡Ο†LpΞ©,Ο‰1≀K1Lpβ€²Ξ©,Ο‰1+h1L∞Ω+ h2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2pβˆ’1Ο†W01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{\int_\Omega {\left| {\mathcal{A}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\omega _1}\;dx} }&{ \le \int_\Omega {\left( {{K_1} + {h_1}{{\left( {\frac{{{\omega _2}}}{{{\omega _1}}}} \right)}^{1/p'}}{{\left| u \right|}^{p/p'}} + {h_2}{{\left| {\nabla u} \right|}^{p/p'}}} \right)\left| {\nabla \varphi } \right|{\omega _1}\;dx} }\\{}&{ \le \int_\Omega {{K_1}\left| {\nabla \varphi } \right|{\omega _1}\;dx + {{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \int_\Omega {{{\left( {\frac{{{\omega _2}}}{{{\omega _1}}}} \right)}^{1/p'}}{{\left| u \right|}^{p/p'}}\left| {\nabla \varphi } \right|{\omega _1}\;dx} }\\{}&{\;\;\; + \;{{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}\int_\Omega {{{\left| {\nabla u} \right|}^{p/p'}}\left| {\nabla \varphi } \right|{\omega _1}\;dx} }\\{}&{ \le {{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}} + {{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _2}} \right)}^{p - 1}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{p - 1}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {{{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right.} \right.}\\{}&{\left. {\left. { + \;{{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}} \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} and by (H8) and Remark 2.5(i), βˆ«Ξ©β„¬x,u,βˆ‡uβˆ‡Ο†Ξ½1 dxβ‰€βˆ«Ξ©K2+g1uq/qβ€²+g2βˆ‡uq/qβ€²βˆ‡Ο†Ξ½1 dx≀K2Lqβ€²Ξ©,Ξ½1βˆ‡Ο†LqΞ©,Ξ½1+g1L∞ΩuLqΞ©,Ξ½1q/qβ€²βˆ‡Ο†LqΞ©,Ξ½1   + g2LβˆžΞ©βˆ‡uLqΞ©,Ξ½1q/qβ€²βˆ‡Ο†LqΞ©,Ξ½1≀Cp,qK2Lqβ€²Ξ©,Ξ½1βˆ‡Ο†LpΞ©,Ο‰1   + Cp,qqβˆ’1g1L∞ΩuLpΞ©,Ο‰1qβˆ’1Cp,qβˆ‡Ο†LpΞ©,Ο‰1   + g2L∞ΩCp,qqβˆ’1βˆ‡uLpΞ©,Ο‰1qβˆ’1Cp,qβˆ‡Ο†LpΞ©,Ο‰1≀Cp,qK2Lqβ€²Ξ©,Ξ½1+Cp,qqg1LβˆžΞ©β€‰β€‰β€‰+ Cp,qqg2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2qβˆ’1Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{\int_\Omega {\left| {\mathcal{B}\left( {x,u,\nabla u} \right)} \right|\left| {\nabla \varphi } \right|{\nu _1}\;dx} }&{ \le \int_\Omega {\left( {{K_2} + {g_1}{{\left| u \right|}^{q/q'}} + {g_2}{{\left| {\nabla u} \right|}^{q/q'}}} \right)\left| {\nabla \varphi } \right|{\nu _1}\;dx} }\\{}&{ \le {{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} + {{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^{q/q'}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| {\left| {\nabla u} \right|} \right\|_{{L^q}\left( {\Omega ,{\nu _1}} \right)}^{q/q'}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}}}\\{}&{ \le {C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;C_{p,q}^{q - 1}{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{q - 1}{C_{p,q}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}C_{p,q}^{q - 1}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{q - 1}{C_{p,q}}{{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left[ {{C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \left( {C_{p,q}^q{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right.} \right.}\\{}&{\left. {\left. {\;\;\; + \;C_{p,q}^q{{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}} \right]{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array} According to (H12) and Remark 2.5(ii), βˆ«Ξ©β„‹x,u,βˆ‡uφν2 dxβ‰€βˆ«Ξ©K3+h3us/sβ€²+h4βˆ‡us/s′φν2 dxβ‰€βˆ«Ξ©K3φν2 dx+h3L∞Ω∫Ωus/s′φν2 dx   + h4LβˆžΞ©βˆ«Ξ©βˆ‡us/s′φν2 dx≀K3Lsβ€²Ξ©,Ξ½2Ο†LsΞ©,Ξ½2+h3L∞ΩuLsΞ©,Ξ½2s/sβ€²Ο†LsΞ©,Ξ½2   + h4LβˆžΞ©βˆ‡uLsΞ©,Ξ½1sβˆ’1Ο†LsΞ©,Ξ½2≀Cp,sK3Ls′ΩφLpΞ©,Ο‰1+h3L∞ΩCp,ssβˆ’1uLpΞ©,Ο‰1sβˆ’1Cp,sΟ†LpΞ©,Ο‰1   + h4L∞ΩCp,ssβˆ’1βˆ‡uLpΞ©,Ο‰1sβˆ’1Cp,sΟ†LpΞ©,Ο‰1≀Cp,sK3Lsβ€²Ξ©,Ξ½2+Cp,ssh3LβˆžΞ©β€‰β€‰β€‰+  h4L∞ΩuW01,pΞ©,Ο‰1,Ο‰2sβˆ’1Ο†W01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{\int_\Omega {\left| {\mathcal{H}\left( {x,u,\nabla u} \right)} \right|\left| \varphi \right|{\nu _2}\;dx} }&{ \le \int_\Omega {\left( {{K_3} + {h_3}{{\left| u \right|}^{s/s'}} + {h_4}{{\left| {\nabla u} \right|}^{s/s'}}} \right)\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ \le \int_\Omega {{K_3}\left| \varphi \right|{\nu _2}\;dx + {{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \int_\Omega {{{\left| u \right|}^{s/s'}}\left| \varphi \right|{\nu _2}\;dx} }\\{}&{\;\;\; + \;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}\int_\Omega {{{\left| {\nabla u} \right|}^{s/s'}}\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ \le {{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}} + {{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| u \right\|_{{L^s}\left( {\Omega ,{\nu _2}} \right)}^{s/s'}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}\left\| {\nabla u} \right\|_{{L^s}\left( {\Omega ,{\nu _1}} \right)}^{s - 1}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}}}\\{}&{ \le {C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( \Omega \right)}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}} + {{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}C_{p,s}^{s - 1}\left\| u \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{s - 1}{C_{p,s}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{\;\;\; + \;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}C_{p,s}^{s - 1}\left\| {\left| {\nabla u} \right|} \right\|_{{L^p}\left( {\Omega ,{\omega _1}} \right)}^{s - 1}{C_{p,s}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left[ {{C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + C_{p,s}^s\left( {{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right.} \right.}\\{}&{\left. {\left. {\;\;\; + \;\;{{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}} \right]{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} and ∫Ωupβˆ’1φω2 dxβ‰€βˆ«Ξ©upΟ‰2 dx1/pβ€²βˆ«Ξ©Ο†pΟ‰2 dx1/p≀CΞ©uW01,pΞ©,Ο‰1,Ο‰2pβˆ’1Ο†W01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{\int_\Omega {{{\left| u \right|}^{p - 1}}\left| \varphi \right|{\omega _2}\;dx} }&{ \le {{\left( {\int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} } \right)}^{1/p'}}{{\left( {\int_\Omega {{{\left| \varphi \right|}^p}{\omega _2}\;dx} } \right)}^{1/p}}}\\{}&{ \le {C_\Omega }\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} and by Step 5, B5u,φ≀ΛCp,22uW01,pΞ©,Ο‰1,Ο‰2Ο†W01,pΞ©,Ο‰1,Ο‰2. \left| {{{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right| \le \Lambda C_{p,2}^2{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}{\left\| \varphi \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}. Hence, in (3.6) we obtain, for all u,Ο†βˆˆW01,pΞ©,Ο‰1,Ο‰2 u,\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) Bu,φ≀K1Lpβ€²Ξ©,Ο‰1+h1L∞Ω+h2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2pβˆ’1    + Cp,qK2Lqβ€²Ξ©,Ξ½1+Cp,qqg1L∞Ω+g2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2qβˆ’1    + Cp,sK3Lsβ€²Ξ©,Ξ½2+Cp,ssh3L∞Ω+h4L∞ΩuW01,pΞ©,Ο‰1,Ο‰2sβˆ’1             + CΞ©uW01,pΞ©,Ο‰1,Ο‰2pβˆ’1+Ξ›Cp,22uW01,pΞ©,Ο‰1,Ο‰2Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{\left| {{\bf{B}}\left( {u,\varphi } \right)} \right| \le \left[ {{{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}} \right.}\\{\;\;\;\; + \;{C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + C_{p,q}^q\left( {{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}}\\{\;\;\;\; + \;{C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + C_{p,s}^s\left( {{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\left. { + \;{C_\Omega }\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1} + \Lambda C_{p,2}^2{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}} \right]{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array} Since B(u, .) is linear, for each u∈W01,pΞ©,Ο‰1,Ο‰2 u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) , there exists a linear and continuous functional on W01,pΞ©,Ο‰1,Ο‰2 W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) denoted by Au such that (Au|Ο†) = B(u, Ο†) for all u,Ο†βˆˆW01,pΞ©,Ο‰1,Ο‰2 u,\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) (here (f|x) denotes the value of the linear functional f at the point x). Moreover Au*≀K1Lpβ€²Ξ©,Ο‰1+h1L∞Ω+h2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2pβˆ’1    + Cp,qK2Lqβ€²Ξ©,Ξ½1+Cp,qqg1L∞Ω+g2L∞ΩuW01,pΞ©,Ο‰1,Ο‰2qβˆ’1    + Cp,sK3Lsβ€²Ξ©,Ξ½2+Cp,ssh3L∞Ω+h4L∞ΩuW01,pΞ©,Ο‰1,Ο‰2sβˆ’1                               + CΞ©uW01,pΞ©,Ο‰1,Ο‰2pβˆ’1+Ξ›Cp,22uW01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{{{\left\| {Au} \right\|}_*} \le {{\left\| {{K_1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + \left( {{{\left\| {{h_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1}}\\{\;\;\;\; + \;{C_{p,q}}{{\left\| {{K_2}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + C_{p,q}^q\left( {{{\left\| {{g_1}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{g_2}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{q - 1}}\\{\;\;\;\; + \;{C_{p,s}}{{\left\| {{K_3}} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + C_{p,s}^s\left( {{{\left\| {{h_3}} \right\|}_{{L^\infty }\left( \Omega \right)}} + {{\left\| {{h_4}} \right\|}_{{L^\infty }\left( \Omega \right)}}} \right)\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{s - 1}}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;{C_\Omega }\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^{p - 1} + \Lambda C_{p,2}^2{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} where Au*=sup{(Au|Ο†)=Bu,Ο†:Ο†βˆˆW01,pΞ©,Ο‰1,Ο‰2,Ο†W01,pΞ©,Ο‰1,Ο‰2=1} {\left\| {Au} \right\|_*} = {\rm{\;sup\;}}\{ \left| {(Au|\varphi )} \right| = \left| {{\bf{B}}\left( {u,\varphi } \right)} \right|:\varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right),{\left\| \varphi \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} = 1\} is the norm of the operator Au. Hence, we obtain the operator A:W01,pΞ©,Ο‰1,Ο‰2β†’W01,pΞ©,Ο‰1,Ο‰2*,   u↦Au. A:W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) \to {\left[ {W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)} \right]^*},\;\;\;u \mapsto Au. Consequently, problem (P) is equivalent to the operator equation Au=T,    u∈W01,pΞ©,Ο‰1,Ο‰2. Au = {\bf{T}},\;\;\;u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right).

Step 7. Using (H2), (H6), (H10), (H13) and Proposition 2.4(b), we obtain, for u1, u2∈W01,pΞ©,Ο‰1,Ο‰2 {u_2} \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) , u1 β‰  u2, (Au1βˆ’Au2|u1βˆ’u2)=Bu1,u1βˆ’u2βˆ’Bu2,u1βˆ’u2=βˆ«Ξ©π’œx,u1βˆ‡u1,βˆ‡u1βˆ’u2Ο‰1dx+βˆ«Ξ©β„¬x,u1,βˆ‡u1,βˆ‡u1βˆ’u2Ξ½1dx   +β€‰βˆ«Ξ©β„‹x,u1,βˆ‡u1u1βˆ’u2Ξ½2dx+∫Ωu1pβˆ’2u1u1βˆ’u2Ο‰2dx   +β€‰βˆ«Ξ©β„³xβˆ‡u1x,βˆ‡u1βˆ’u2dxβ€‰β€‰β€‰βˆ’β€‰βˆ«Ξ©π’œx,u2,βˆ‡u2,βˆ‡u1βˆ’u2Ο‰1dxβˆ’βˆ«Ξ©β„¬(x,u2,βˆ‡u2,βˆ‡u1βˆ’u2Ξ½1dxβ€‰β€‰β€‰βˆ’β€‰βˆ«Ξ©β„‹x,u2,βˆ‡u2u1βˆ’u2Ξ½2dxβˆ’βˆ«Ξ©u2pβˆ’2u2u1βˆ’u2Ο‰2dxβ€‰β€‰β€‰βˆ’β€‰βˆ«Ξ©β„³xβˆ‡u2x,βˆ‡u1βˆ’u2dx=βˆ«Ξ©π’œx,u1βˆ‡u1βˆ’π’œx,u2,βˆ‡u2,βˆ‡u1βˆ’u2Ο‰1dx   +β€‰βˆ«Ξ©β„¬x,u1,βˆ‡u1βˆ’β„¬x,u2,βˆ‡u2,βˆ‡u1βˆ’u2Ξ½1dx   +β€‰βˆ«Ξ©β„‹x,u1,βˆ‡u1βˆ’β„‹x,u2,βˆ‡u2u1βˆ’u2v2dx   +β€‰βˆ«Ξ©u1pβˆ’2u1βˆ’u2pβˆ’2u2u1βˆ’u2Ο‰2dx   +β€‰βˆ«Ξ©β„³xβˆ‡u1βˆ’u2,βˆ‡u1βˆ’u2dxβ‰₯ΞΈ1βˆ«Ξ©βˆ‡u1βˆ’u2pΟ‰1dx+Ξ²p∫Ωu1+u2pβˆ’2u1βˆ’u22Ο‰2dx   +β€‰Ξ›βˆ«Ξ©βˆ‡u1βˆ’u22Ξ½3dxβ‰₯ΞΈ1βˆ«Ξ©βˆ‡u1βˆ’u2pΟ‰1 dx+Ξ²p∫Ωu1βˆ’u2pβˆ’2u1βˆ’u22Ο‰2dx=ΞΈ1βˆ«Ξ©βˆ‡u1βˆ’u2pΟ‰1dx+Ξ²p∫Ωu1βˆ’u2pΟ‰2dxβ‰₯Ξ³1u1βˆ’u2W01,pΞ©,Ο‰1,Ο‰2p, \begin{array}{*{35}{l}} (A{{u}_{1}}-A{{u}_{2}}|{{u}_{1}}-{{u}_{2}}) & =\mathbf{B}\left( {{u}_{1}},~{{u}_{1}}-{{u}_{2}} \right)-\mathbf{B}\left( {{u}_{2}},{{u}_{1}}-{{u}_{2}} \right) \\ {} & =\int_{\Omega }{\left\langle \mathcal{A}\left( x,{{u}_{1}}\nabla {{u}_{1}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\omega }_{1}}dx}+\int_{\Omega }{\left\langle \mathcal{B}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\nu }_{1}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\mathcal{H}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right)\left( {{u}_{1}}-{{u}_{2}} \right){{\nu }_{2}}dx}+\int_{\Omega }{{{\left| {{u}_{1}} \right|}^{p-2}}{{u}_{1}}\left( {{u}_{1}}-{{u}_{2}} \right){{\omega }_{2}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left\langle \mathcal{M}\left( x \right)\nabla {{u}_{1}}\left( x \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle dx} \\ {} & \ \ \ -\ \int_{\Omega }{\left\langle \mathcal{A}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\omega }_{1}}dx}-\int_{\Omega }{\left\langle \mathcal{B}(x,{{u}_{2}},\nabla {{u}_{2}},\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\nu }_{1}}dx} \\ {} & \ \ \ -\ \int_{\Omega }{\mathcal{H}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right)\left( {{u}_{1}}-{{u}_{2}} \right){{\nu }_{2}}dx}-\int_{\Omega }{{{\left| {{u}_{2}} \right|}^{p-2}}{{u}_{2}}\left( {{u}_{1}}-{{u}_{2}} \right){{\omega }_{2}}dx} \\ {} & \ \ \ -\ \int_{\Omega }{\left\langle \mathcal{M}\left( x \right)\nabla {{u}_{2}}\left( x \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle dx} \\ {} & =\int_{\Omega }{\left\langle \mathcal{A}\left( x,{{u}_{1}}\nabla {{u}_{1}} \right)-\mathcal{A}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\omega }_{1}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left\langle \mathcal{B}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right)-\mathcal{B}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle {{\nu }_{1}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left( \mathcal{H}\left( x,{{u}_{1}},\nabla {{u}_{1}} \right)-\mathcal{H}\left( x,{{u}_{2}},\nabla {{u}_{2}} \right) \right)\left( {{u}_{1}}-{{u}_{2}} \right){{v}_{2}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left( {{\left| {{u}_{1}} \right|}^{p-2}}{{u}_{1}}-{{\left| {{u}_{2}} \right|}^{p-2}}{{u}_{2}} \right)\left( {{u}_{1}}-{{u}_{2}} \right){{\omega }_{2}}dx} \\ {} & \ \ \ +\ \int_{\Omega }{\left\langle \mathcal{M}\left( x \right)\nabla \left( {{u}_{1}}-{{u}_{2}} \right),\nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right\rangle dx} \\ {} & \ge {{\theta }_{1}}\int_{\Omega }{{}}{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{p}}{{\omega }_{1}}dx+{{\beta }_{p}}\int_{\Omega }{{{\left( \left| {{u}_{1}}\left| + \right|{{u}_{2}} \right| \right)}^{p-2}}{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{2}}{{\omega }_{2}}dx} \\ {} & \ \ \ +\ \Lambda \int_{\Omega }{{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{2}}{{\nu }_{3}}dx} \\ {} & \ge {{\theta }_{1}}\int_{\Omega }{{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{p}}{{\omega }_{1}}\ dx}+{{\beta }_{p}}\int_{\Omega }{{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{p-2}}{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{2}}{{\omega }_{2}}dx} \\ {} & ={{\theta }_{1}}\int_{\Omega }{{{\left| \nabla \left( {{u}_{1}}-{{u}_{2}} \right) \right|}^{p}}{{\omega }_{1}}dx}+{{\beta }_{p}}\int_{\Omega }{{{\left| {{u}_{1}}-{{u}_{2}} \right|}^{p}}{{\omega }_{2}}dx}\ge {{\gamma }_{1}}\left\| {{u}_{1}}-{{u}_{2}} \right\|_{W_{0}^{1,p}\left( \Omega ,{{\omega }_{1}},{{\omega }_{2}} \right)}^{p}, \\ \end{array} where Ξ³1 = min{ΞΈ1, Ξ²p}. Therefore, the operator A is strictly monotone. Moreover, from (H3), (H7), (H11) and (H13) we obtain Au|u=Bu,u=B1u,u+B2u,u+B3u,u+B4u,u+B5u,u=βˆ«Ξ©π’œx,u,βˆ‡u,βˆ‡uΟ‰1 dx+βˆ«Ξ©β„¬x,u,βˆ‡u,βˆ‡uΞ½1 dx   +β€‰βˆ«Ξ©β„‹x,u,βˆ‡uu ν2 dx+∫ΩupΟ‰2 dx+βˆ«Ξ©β„³xβˆ‡u,βˆ‡udxβ‰₯Ξ»1βˆ«Ξ©βˆ‡upΟ‰1 dx+Ξ»2βˆ«Ξ©βˆ‡uqΞ½1 dx+Ξ›2∫ΩuqΞ½1 dx   + λ3βˆ«Ξ©βˆ‡usΞ½2 dx+Ξ›3∫ΩusΞ½2 dx   +β€‰βˆ«Ξ©upΟ‰2 dx+Ξ›βˆ«Ξ©βˆ‡u2Ξ½3 dxβ‰₯Ξ»1βˆ«Ξ©βˆ‡upΟ‰1 dx+∫ΩupΟ‰2 dxβ‰₯Ξ³2uW01,pΞ©,Ο‰1,Ο‰2p, \begin{array}{*{20}{l}}{\left( {Au|u} \right)}&{ = {\bf{B}}\left( {u,u} \right) = {{\bf{B}}_{\bf{1}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{2}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{3}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{4}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{5}}}\left( {u,u} \right)}\\{}&{ = \int_\Omega {\left\langle {\mathcal{A}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\omega _1}\;dx} + \int_\Omega {\left\langle {\mathcal{B}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\nu _1}\;dx} }\\{}&{\;\;\; + \;\int_\Omega {\mathcal{H}\left( {x,u,\nabla u} \right)u\;{\nu _2}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} + \int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla u,\nabla u} \right\rangle dx} }\\{}&{ \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} + {\lambda _2}\int_\Omega {{{\left| {\nabla u} \right|}^q}{\nu _1}\;dx} + {\Lambda _2}\int_\Omega {} {{\left| u \right|}^q}{\nu _1}\;dx}\\{}&{\;\;\; + \;{\lambda _3}\int_\Omega {{{\left| {\nabla u} \right|}^s}{\nu _2}\;dx} + {\Lambda _3}\int_\Omega {{{\left| u \right|}^s}{\nu _2}\;dx} }\\{}&{\;\;\; + \;\int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} + \Lambda \int_\Omega {{{\left| {\nabla u} \right|}^2}{\nu _3}\;dx} }\\{}&{ \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} \ge {\gamma _2}\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1}} \right),{\omega _2}}^p,}\end{array} where Ξ³2 = min{Ξ»1, 1}. Hence, since 1 < q, s < p < ∞, we have (Au|u)uW01,pΞ©,Ο‰1,Ο‰2β†’+∞,   as  uW01,pΞ©,Ο‰1,Ο‰2β†’+∞, \frac{{(Au|u)}}{{{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}}} \to + \infty ,\;\;{\rm{as}}\;\;{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} \to + \infty , that is, A is coercive.

Step 8. We need to show that the operator A is continuous. Let umβ†’u in X as m β†’ ∞. We have, B1um,Ο†βˆ’B1u,Ο†β‰€βˆ‘j=1nβˆ«Ξ©π’œjx,um,βˆ‡umβˆ’π’œjx,u,βˆ‡uDj φω1 dx=βˆ‘j=1n∫ΩFjumβˆ’FjuDj φω1 dxβ‰€βˆ‘j=1nFjumβˆ’FjuLpβ€²Ξ©,Ο‰1βˆ‡Ο†LpΞ©,Ο‰1β‰€βˆ‘j=1nFjumβˆ’FjuLpβ€²Ξ©,Ο‰1Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{1}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{1}}}\left( {u,\varphi } \right)} \right|}&{ \le \sum\limits_{j = 1}^n {\int_\Omega {\left| {{\mathcal{A}_j}\left( {x,{u_m},\nabla {u_m}} \right) - {\mathcal{A}_j}\left( {x,u,\nabla u} \right)} \right|\left| {{D_j}\varphi } \right|{\omega _1}\;dx} } }\\{}&{ = \sum\limits_{j = 1}^n {\int_\Omega {\left| {{F_j}{u_m} - {F_j}u} \right|\left| {{D_j}\varphi } \right|{\omega _1}\;dx} } }\\{}&{ \le \left( {\sum\limits_{j = 1}^n {{{\left\| {{F_j}{u_m} - {F_j}u} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {\sum\limits_{j = 1}^n {{{\left\| {{F_j}{u_m} - {F_j}u} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array} By Remark 2.5(i), we obtain B2um,Ο†βˆ’B2u,Ο†β‰€βˆ‘j=1nβˆ«Ξ©β„¬jx,um,βˆ‡umβˆ’β„¬jx,u,βˆ‡uDjφν1 dx=βˆ‘j=1n∫ΩGjumβˆ’GjuDjφν1 dxβ‰€βˆ‘j=1nGjumβˆ’GjuLqβ€²Ξ©,Ξ½1βˆ‡Ο†LqΞ©,Ξ½1≀Cp,qβˆ‘j=1nGjumβˆ’GjuLqβ€²Ξ©,Ξ½1βˆ‡Ο†LpΞ©,Ο‰1≀Cp,qβˆ‘j=1nGjumβˆ’GjuLqβ€²Ξ©,Ξ½1Ο†W01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{2}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{2}}}\left( {u,\varphi } \right)} \right|}&{ \le \sum\limits_{j = 1}^n {\int_\Omega {\left| {{\mathcal{B}_j}\left( {x,{u_m},\nabla {u_m}} \right) - {\mathcal{B}_j}\left( {x,u,\nabla u} \right)} \right|\left| {{D_j}\varphi } \right|{\nu _1}\;dx} } }\\{}&{ = \sum\limits_{j = 1}^n {\int_\Omega {\left| {{G_j}{u_m} - {G_j}u} \right|\left| {{D_j}\varphi } \right|{\nu _1}\;dx} } }\\{}&{ \le \left( {\sum\limits_{j = 1}^n {{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}}}\\{}&{ \le {C_{p,q}}\left( {\sum\limits_{j = 1}^n {{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} } \right){{\left\| {\left| {\nabla \varphi } \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le {C_{p,q}}\left( {\sum\limits_{j = 1}^n {{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} } \right){{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} and, by Remark 2.5(ii), B3um,Ο†βˆ’B3u,Ο†β‰€βˆ«Ξ©β„‹x,um,βˆ‡umβˆ’β„‹x,u,βˆ‡uφν2 dx=∫ΩHumβˆ’Huφν2 dx≀Humβˆ’HuLsβ€²Ξ©,Ξ½2Ο†LsΞ©,Ξ½2≀Cp,sHumβˆ’HuLsβ€²Ξ©,Ξ½2Ο†LpΞ©,Ο‰1≀Cp,sHumβˆ’HuLsβ€²Ξ©,Ξ½2Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{3}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{3}}}\left( {u,\varphi } \right)} \right|}&{ \le \int_\Omega {\left| {\mathcal{H}\left( {x,{u_m},\nabla {u_m}} \right) - \mathcal{H}\left( {x,u,\nabla u} \right)} \right|\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ = \int_\Omega {\left| {H{u_m} - Hu} \right|\left| \varphi \right|{\nu _2}\;dx} }\\{}&{ \le {{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{{L^s}\left( {\Omega ,{\nu _2}} \right)}}}\\{}&{ \le {C_{p,s}}{{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le {C_{p,s}}{{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array} On account of Step 4, B4um,Ο†βˆ’B4u,Ο†β‰€βˆ«Ξ©umpβˆ’2umβˆ’upβˆ’2uφω2 dx=∫ΩJumβˆ’Juφω2 dx≀Jumβˆ’JuLpβ€²Ξ©,Ο‰2Ο†W01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{4}}}\left( {{u_m},\varphi } \right) - {B_4}\left( {u,\varphi } \right)} \right|}&{ \le \int_\Omega {\left| {{{\left| {{u_m}} \right|}^{p - 2}}{u_m} - {{\left| u \right|}^{p - 2}}u} \right|\left| \varphi \right|{\omega _2}\;dx} }\\{}&{ = \int_\Omega {\left| {J{u_m} - Ju} \right|\left| \varphi \right|{\omega _2}\;dx} }\\{}&{ \le {{\left\| {J{u_m} - Ju} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} and by Step 5, B5um,Ο†βˆ’B5u,Ο†=βˆ«Ξ©β„³xβˆ‡umβˆ’uβˆ‡Ο†dx≀ΛCp,22umβˆ’uW01,pΞ©,Ο‰1,Ο‰2Ο†W01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{\left| {{{\bf{B}}_{\bf{5}}}\left( {{u_m},\varphi } \right) - {{\bf{B}}_{\bf{5}}}\left( {u,\varphi } \right)} \right|}&{ = \left| {\int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla \left( {{u_m} - u} \right)\nabla \varphi } \right\rangle dx} } \right|}\\{}&{ \le \Lambda C_{p,2}^2{{\left\| {{u_m} - u} \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}{{\left\| \varphi \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} for all Ο†βˆˆW01,pΞ©,Ο‰1,Ο‰2 \varphi \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) . Hence, Bum,Ο†βˆ’Bu,φ≀B1um,Ο†βˆ’B1u,Ο†+B2um,Ο†βˆ’B2u,Ο†+ B3um,Ο†βˆ’B3u,Ο†+B4um,Ο†βˆ’B4u,Ο†+B5um,Ο†βˆ’B5u,Ο†β€‰β€‰β€‰β€‰β€‰β‰€βˆ‘j=1nFjumβˆ’FjuLpβ€²Ξ©,Ο‰1+Cp,qGjumβˆ’GjuLqβ€²Ξ©,Ξ½1           + Cp,sHumβˆ’HuLsβ€²Ξ©,Ξ½2+Jumβˆ’JuLpβ€²Ξ©,Ο‰2                            + ΛCp,22β€–umβˆ’uβ€–W01,pΞ©,Ο‰1,Ο‰2Ο†W01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{35}{l}} \left| \mathbf{B}\left( {{u}_{m}},\varphi \right)-\mathbf{B}\left( u,\varphi \right) \right|\le \left| {{\mathbf{B}}_{\mathbf{1}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{1}}}\left( u,\varphi \right) \right|+\left| {{\mathbf{B}}_{\mathbf{2}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{2}}}\left( u,\varphi \right) \right| \\ +\ \left| {{\mathbf{B}}_{\mathbf{3}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{3}}}\left( u,\varphi \right) \right|+\left| {{\mathbf{B}}_{\mathbf{4}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{4}}}\left( u,\varphi \right) \right|+\left| {{\mathbf{B}}_{\mathbf{5}}}\left( {{u}_{m}},\varphi \right)-{{\mathbf{B}}_{\mathbf{5}}}\left( u,\varphi \right) \right| \\ \ \ \ \ \ \le \left[ \sum\limits_{j=1}^{n}{\left( {{\left\| {{F}_{j}}{{u}_{m}}-{{F}_{j}}u \right\|}_{{{L}^{{{p}'}}}\left( \Omega ,{{\omega }_{1}} \right)}}+{{C}_{p,q}}{{\left\| {{G}_{j}}{{u}_{m}}-{{G}_{j}}u \right\|}_{{{L}^{{{q}'}}}\left( \Omega ,{{\nu }_{1}} \right)}} \right)} \right. \\ \ \ \ \ \ \ \ \ \ \ \ +\ {{C}_{p,s}}{{\left\| H{{u}_{m}}-Hu \right\|}_{{{L}^{{{s}'}}}\left( \Omega ,{{\nu }_{2}} \right)}}+{{\left\| J{{u}_{m}}-Ju \right\|}_{{{L}^{{{p}'}}}\left( \Omega ,{{\omega }_{2}} \right)}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left. +\ \Lambda C_{p,2}^{2}\|{{u}_{m}}-u{{\|}_{W_{0}^{1,p}\left( \Omega ,{{\omega }_{1}},{{\omega }_{2}} \right)}} \right]{{\left\| \varphi \right\|}_{W_{0}^{1,p}\left( \Omega ,{{\omega }_{1}},{{\omega }_{2}} \right)}}. \\ \end{array} Then we obtain Aumβˆ’Au*β‰€βˆ‘j=1nFjumβˆ’FjuLpβ€²Ξ©,Ο‰1+Cp,qGjumβˆ’GjuLqβ€²Ξ©,Ξ½1             + Cp,sHumβˆ’HuLsβ€²Ξ©,Ξ½2+Jumβˆ’JuLpβ€²Ξ©,Ο‰2                                                 + ΛCp,22umβˆ’uW01,pΞ©,Ο‰1,Ο‰2. \begin{array}{*{20}{l}}{{{\left\| {A{u_m} - Au} \right\|}_*} \le \sum\limits_{j = 1}^n {\left( {{{\left\| {{F_j}{u_m} - {F_j}u} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}} + {C_{p,q}}{{\left\| {{G_j}{u_m} - {G_j}u} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}} \right)} }\\{\;\;\;\;\;\;\;\;\;\;\;\;\; + \;{C_{p,s}}{{\left\| {H{u_m} - Hu} \right\|}_{{L^{s'}}\left( {\Omega ,{\nu _2}} \right)}} + {{\left\| {J{u_m} - Ju} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _2}} \right)}}}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\Lambda C_{p,2}^2{{\left\| {{u_m} - u} \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}.}\end{array} Hence, using (3.2), (3.3), (3.4) and (3.5) we have β€–Aum βˆ’ Auβ€–βˆ—β†’0 as m β†’ +∞, that is, A is continuous and this implies that A is hemicontinuous.

Therefore, by Theorem 3.1, the operator equation Au = T has a unique solution u∈W01,pΞ©,Ο‰1,Ο‰2 u \in W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right) and it is the unique solution for problem (P).

Step 8. Estimates for uW01,pΞ©,Ο‰1,Ο‰2 {\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} . In particular, by setting Ο† = u in Definition 2.3, we have (3.7) Bu,u=B1u,u+B2u,u+B3u,u+B4u,u+B5u,u=Tu. {\bf{B}}\left( {u,u} \right) = {{\bf{B}}_{\bf{1}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{2}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{3}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{4}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{5}}}\left( {u,u} \right) = {\bf{T}}\left( u \right). Hence, using (H3), (H7), (H11) and (H13) we obtain (3.8) B1u,u+B2u,u+B3u,u+B4u,u+B5u,u       =βˆ«Ξ©π’œx,u,βˆ‡u,βˆ‡uΟ‰1 dx+∫ΩBx,u,βˆ‡u,βˆ‡uΞ½1 dx           +β€‰βˆ«Ξ©β„‹x,u,βˆ‡uu ν2 dx+∫Ωupβˆ’2u2Ο‰2dx+βˆ«Ξ©β„³xβˆ‡u,βˆ‡udx       β‰₯Ξ»1βˆ«Ξ©βˆ‡upΟ‰1dx+Ξ»2βˆ«Ξ©βˆ‡uqΞ½1 dx+Ξ›2∫ΩuqΞ½1 dx           + λ3βˆ«Ξ©βˆ‡usΞ½2 dx+Ξ›3∫ΩusΞ½2 dx+∫ΩupΟ‰2 dx+Ξ›βˆ«Ξ©βˆ‡u2Ξ½3 dx       β‰₯Ξ»1βˆ«Ξ©βˆ‡upΟ‰1 dx+∫ΩupΟ‰2 dxβ‰₯Ξ³2uW01,pΞ©,Ο‰1,Ο‰2p, \begin{array}{*{20}{l}}{{{\bf{B}}_{\bf{1}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{2}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{3}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{4}}}\left( {u,u} \right) + {{\bf{B}}_{\bf{5}}}\left( {u,u} \right)}\\{\;\;\;\;\;\;\; = \int_\Omega {\left\langle {\mathcal{A}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\omega _1}\;dx} + \int_\Omega {\left\langle {{\bf{B}}\left( {x,u,\nabla u} \right),\nabla u} \right\rangle {\nu _1}\;dx} }\\{\;\;\;\;\;\;\;\;\;\;\; + \;\int_\Omega {\mathcal{H}\left( {x,u,\nabla u} \right)u\;{\nu _2}\;dx} + \int_\Omega {{{\left| u \right|}^{p - 2}}{u^2}{\omega _2}dx} + \int_\Omega {\left\langle {\mathcal{M}\left( x \right)\nabla u,\nabla u} \right\rangle dx} }\\{\;\;\;\;\;\;\; \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}dx} + {\lambda _2}\int_\Omega {{{\left| {\nabla u} \right|}^q}{\nu _1}\;dx} + {\Lambda _2}\int_\Omega {{{\left| u \right|}^q}{\nu _1}\;dx} }\\{\;\;\;\;\;\;\;\;\;\;\; + \;{\lambda _3}\int_\Omega {{{\left| {\nabla u} \right|}^s}{\nu _2}\;dx} + {\Lambda _3}\int_\Omega {{{\left| u \right|}^s}{\nu _2}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} + \Lambda \int_\Omega {{{\left| {\nabla u} \right|}^2}{\nu _3}\;dx} }\\{\;\;\;\;\;\;\; \ge {\lambda _1}\int_\Omega {{{\left| {\nabla u} \right|}^p}{\omega _1}\;dx} + \int_\Omega {{{\left| u \right|}^p}{\omega _2}\;dx} \ge {\gamma _2}\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p,}\end{array} where Ξ³2 = min{Ξ»1, 1}, and by Remark 2.5(i) (3.9) Tu=∫Ωf0 u dx+βˆ‘j=1n∫ΩfjDju dx≀ f0/Ξ½1Lqβ€²Ξ©,Ξ½1uLqΞ©,Ξ½1+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰1βˆ‡uLpΞ©,Ο‰1≀Cp,qf0/Ξ½1Lqβ€²Ξ©,Ξ½1+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰1uW01,pΞ©,Ο‰1,Ο‰2=MuW01,pΞ©,Ο‰1,Ο‰2, \begin{array}{*{20}{l}}{{\bf{T}}\left( u \right)}&{ = \int_\Omega {{f_0}\;u\;dx} + \sum\limits_{j = 1}^n {\int_\Omega {{f_j}{D_j}u\;dx} } }\\{}&{ \le \;{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}}{{\left\| u \right\|}_{{L^q}\left( {\Omega ,{\nu _1}} \right)}} + \left( {\sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| {\left| {\nabla u} \right|} \right\|}_{{L^p}\left( {\Omega ,{\omega _1}} \right)}}}\\{}&{ \le \left( {{C_{p,q}}{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right){{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}}\\{}&{ = M{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}},}\end{array} where M=Cp,qf0/Ξ½1Lqβ€²Ξ©,Ξ½1+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰1 M = {C_{p,q}}{\left\| {{f_0}/{\nu _1}} \right\|_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} . Hence in (3.7), using (3.8) and (3.9), we obtain Ξ³2uW01,pΞ©,Ο‰1,Ο‰2p≀MuW01,pΞ©,Ο‰1,Ο‰2 {\gamma _2}\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}^p \le M{\left\| u \right\|_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}} . Therefore, uW01,pΞ©,Ο‰1,Ο‰2≀MΞ³21/pβˆ’1=CCp,qf0/Ξ½1Lqβ€²Ξ©,Ξ½1+βˆ‘j=1nfj/Ο‰1Lpβ€²Ξ©,Ο‰11/pβˆ’1, \begin{array}{*{20}{l}}{{{\left\| u \right\|}_{W_0^{1,p}\left( {\Omega ,{\omega _1},{\omega _2}} \right)}}}&{ \le {{\left( {\frac{M}{{{\gamma _2}}}} \right)}^{1/\left( {p - 1} \right)}}}\\{}&{ = C{{\left( {{C_{p,q}}{{\left\| {{f_0}/{\nu _1}} \right\|}_{{L^{q'}}\left( {\Omega ,{\nu _1}} \right)}} + \sum\limits_{j = 1}^n {{{\left\| {{f_j}/{\omega _1}} \right\|}_{{L^{p'}}\left( {\Omega ,{\omega _1}} \right)}}} } \right)}^{1/\left( {p - 1} \right)}},}\end{array} where C = (1/Ξ³2)1/(pβˆ’1).

Example

Let Ξ© = {(x, y) ∈ ℝ2 : x2 + y2 < 1}, the weight functions Ο‰1(x, y) = (x2 + y2)βˆ’1/2, Ο‰2(x, y) = (x2 + y2)βˆ’3/2, Ξ½1(x, y) = (x2 + y2)βˆ’1/3, Ξ½2(x, y) = (x2 + y2)βˆ’1 and Ξ½3(x, y) = (x2 + y2)βˆ’1/2 (Ο‰1, Ο‰2 ∈ A4, p = 4, q = 3 and s = 2), the function π’œ:Ω×ℝ×ℝ2→ℝ2,β€‰β€‰β€‰π’œx,y,Ξ·,ΞΎ=h1x,y|ΞΎ|2ΞΎ, \mathcal{A}:\Omega \times \mathbb{R} \times {\mathbb{R}^2} \to {\mathbb{R}^2},\;\;\;\mathcal{A}\left( {\left( {x,y} \right),\eta ,\xi } \right) = {h_1}\left( {x,y} \right)|\xi {|^2}\xi , where h1(x, y) = 2 e(x2+y2), and ℬ:Ω×ℝ×ℝ2→ℝ2,   ℬx,y,Ξ·,ΞΎ=g2x,yΞΎΞΎ, \mathcal{B}:\Omega \times \mathbb{R} \times {\mathbb{R}^2} \to {\mathbb{R}^2},\;\;\mathcal{B}\left( {\left( {x,y} \right),\eta ,\xi } \right) = {g_2}\left( {x,y} \right)\left| \xi \right|\xi , where g2(x, y) = 2 + cos(x2 + y2), and β„‹:Ω×ℝ×ℝ2→ℝ,   ℋx,y,Ξ·,ΞΎ=η h2x,y, \mathcal{H}:\Omega \times \mathbb{R} \times {\mathbb{R}^2} \to \mathbb{R},\;\;\;\mathcal{H}\left( {\left( {x,y} \right),\eta ,\xi } \right) = \eta \;{h_2}\left( {x,y} \right), where h2(x, y) = 1 + cos2(xy) and the coefficient matrix β„³x,y=ai,jx,y=Ξ»(x2+y2)βˆ’1/200Ξ›(x2+y2)βˆ’1/2, \mathcal{M}\left( {x,y} \right) = \left( {{a_{i,j}}\left( {x,y} \right)} \right) = \left( {\begin{array}{*{20}{c}}{\lambda {{({x^2} + {y^2})}^{ - 1/2}}}&0\\0&{\Lambda {{({x^2} + {y^2})}^{ - 1/2}}}\end{array}} \right), where 0 < Ξ» < Ξ›.

Let us consider the partial differential operator Lux,y=βˆ’divπ’œx,y,βˆ‡uΟ‰1x,y+ℬx,y,u,βˆ‡uΞ½1x,y    + ℋx,y,u,βˆ‡uΞ½2x,y+u2uΟ‰2x,yβˆ’βˆ‘i,j=12DjaijxDiuu. \begin{array}{*{20}{l}}{Lu\left( {x,y} \right)}&{ = - {\rm{div}}\left( {\mathcal{A}\left( {\left( {x,y} \right),\nabla u} \right){\omega _1}\left( {x,y} \right) + \mathcal{B}\left( {\left( {x,y} \right),u,\nabla u} \right){\nu _1}\left( {x,y} \right)} \right)}\\{}&{\;\;\; + \;\mathcal{H}\left( {\left( {x,y} \right),u,\nabla u} \right){\nu _2}\left( {x,y} \right) + {{\left| u \right|}^2}u{\omega _2}\left( {x,y} \right) - \sum\limits_{i,j = 1}^2 {{D_j}\left( {{a_{ij}}\left( x \right){D_i}u\left( u \right)} \right).} }\end{array}

Therefore, by Theorem 1.1, the problem Lux=cosxyx2+y2βˆ’βˆ‚βˆ‚xsinxyx2+y2βˆ’βˆ‚βˆ‚ysinxyx2+y2in  Ω,ux=0  onβ€‰βˆ‚Ξ©, \left\{ {\begin{array}{*{20}{l}}{Lu\left( x \right) = \frac{{\;\cos \;\left( {xy} \right)}}{{\left( {{x^2} + {y^2}} \right)}} - \frac{\partial }{{\partial x}}\left( {\frac{{\;\sin \;\left( {xy} \right)}}{{\left( {{x^2} + {y^2}} \right)}}} \right) - \frac{\partial }{{\partial y}}\left( {\frac{{\;\sin \;\left( {xy} \right)}}{{\left( {{x^2} + {y^2}} \right)}}} \right)}&{{\rm{in}}\;\;\Omega ,}\\{u\left( x \right) = 0\;\;{\rm{on}}\;\partial \Omega ,}&{}\end{array}} \right. has a unique solution u∈W01,4Ξ©,Ο‰1,Ο‰2 u \in W_0^{1,4}\left( {\Omega ,{\omega _1},{\omega _2}} \right) .

DOI:Β https://doi.org/10.2478/amsil-2024-0024 | Journal eISSN:Β 2391-4238 | Journal ISSN:Β 0860-2107
Language:Β English
Page range:Β 223 - 247
Submitted on:Β Mar 11, 2024
Accepted on:Β Oct 28, 2024
Published on:Β Nov 19, 2024
Published by:Β University of Silesia in Katowice, Institute of Mathematics
In partnership with:Β Paradigm Publishing Services
Publication frequency:Β 2 issues per year
Keywords:

Β© 2024 Albo Carlos Cavalheiro, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.