Have a personal or library account? Click to login
Fibonacci Sums Modulo 5 Cover

References

  1. K. Adegoke, Weighted sums of some second-order sequences, Fibonacci Quart. 56 (2018), no. 3, 252–262.
  2. K. Adegoke, R. Frontczak, and T. Goy, New binomial Fibonacci sums, Palest. J. Math. 13 (2024), no. 1, 323–339.
  3. K. Adegoke, R. Frontczak, and T. Goy, Binomial Fibonacci sums from Chebyshev polynomials, J. Integer Seq. 26 (2023), no. 9, Paper No. 23.9.6, 26 pp.
  4. K. Adegoke, R. Frontczak, and T. Goy, On Fibonacci and Lucas binomial sums modulo 5, in: XIX International Scientific Mykhailo Kravchuk Conference. Abstracts, I. Sikorsky Kyiv Polytechnic Institute, Kyiv, 2023, pp. 60–61.
  5. K. Adegoke, A. Olatinwo, and S. Ghosh, Cubic binomial Fibonacci sums, Electron. J. Math. 2 (2021), 44–51.
  6. M. Bai, W. Chu, and D. Guo, Reciprocal formulae among Pell and Lucas polynomials, Mathematics 10 (2022), no. 15, 2691, 11 pp.
  7. Z. Fan and W. Chu, Convolutions involving Chebyshev polynomials, Electron. J. Math. 3 (2022), 38–46.
  8. R. Frontczak and T. Goy, Chebyshev-Fibonacci polynomial relations using generating functions, Integers 21 (2021), Paper No. A100, 15 pp.
  9. I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, Elsevier/Academic Press, Amsterdam, 2015.
  10. E. Hansen, Addendum for ‘A Table of Series and Products’, preprint (undated), 56 pp. Available at carmamaths.org/resources/jon/Preprints/Books/Other/hansen07.pdf.
  11. E. Kılıç, S. Koparal, and N. Ömür, Powers sums of the first and second kinds of Chebyshev polynomials, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 2, 425–435.
  12. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
  13. D.J. Leeming, The coefficients of sinh xt/sin t and the Bernoulli polynomials, Internat. J. Math. Ed. Sci. Tech. 28 (1997), no. 4, 575–579.
  14. C. Li and Z. Wenpeng, Chebyshev polynomials and their some interesting applications, Adv. Difference Equ. (2017), Paper No. 303, 9 pp.
  15. Y. Li, On Chebyshev polynomials, Fibonacci polynomials, and their derivatives, J. Appl. Math. (2014), Art. ID 451953, 8 pp.
  16. J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003.
  17. N.J.A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences. Available at oeis.org/book.html.
  18. S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section. Theory and Applications, Dover Publications, Inc., Mineola, NY, 2008.
  19. W. Zhang, On Chebyshev polynomials and Fibonacci numbers, Fibonacci Quart. 40 (2002), no. 5, 424–428.
DOI: https://doi.org/10.2478/amsil-2024-0015 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 1 - 22
Submitted on: Dec 1, 2023
Accepted on: May 10, 2024
Published on: Jun 7, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2024 Kunle Adegoke, Robert Frontczak, Taras Goy, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.