2.Fibonacci sums modulo 5 from the sin nx and cos nx expansions
We begin with a known lemma [9, 1.331(3) and 1.331(1)].
Lemma 2.1.
If n is a positive integer, then
(2.1)
\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}n} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k}}x = {2^{n - 1}}\;{{\cos }^n}\;x - \cos \;nx} ,
(2.2)
\sum\limits_{k = 0}^{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor } {{{( - 1)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k - 1}}x = {{\sin nx} \over {\sin x}}.}
Lemma 2.2.
If n is an integer, then
(2.3)
\cos \left( {{{n\pi } \over 5}} \right) = \left\{ {\matrix{ {{{( - 1)}^n},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{n - 1}}\alpha /2,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{n - 1}}\beta /2,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
(2.4)
\cos \left( {{{2n\pi } \over 5}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Proof
Relations stated in (2.3) can be proved easily by elementary methods. For instance, they follow by applying the addition theorem for the cosine function
\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b
combined with the special values
\matrix{ {\cos \left( {{\pi \over 5}} \right) = {\alpha \over 2},} & {\cos \left( {{{2\pi } \over 5}} \right) = - {\beta \over 2},} & {\cos \left( {{{3\pi } \over 5}} \right) = {\beta \over 2},} & {\cos \left( {{{4\pi } \over 5}} \right) = - {\alpha \over 2}} \cr } .
Relations stated in (2.4) follow directly from (2.3).
In our first main results we state Lucas (Fibonacci) identities involving binomial coefficient and additional parameter.
Theorem 2.3.
If n is a positive integer and t is any integer, then
\matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{ {{L_{n + t}} - {{( - 1)}^n}2{L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + t}} + {{( - 1)}^n}{L_{t + 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + t}} - {{( - 1)}^n}{L_{t - 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{ {{F_{n + t}} - {{( - 1)}^n}2{F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + t}} + {{( - 1)}^n}{F_{t + 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + t}} - {{( - 1)}^n}{F_{t - 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π/5 in (2.1) and use (2.3) and the fact that
(2.5)
\matrix{ {2{\alpha ^r} = {L_r} + {F_r}\sqrt 5 ,} \hfill & {2{\beta ^r} = {L_r} - {F_r}\sqrt 5 } \hfill \cr }
for any integer r.
We proceed with some corollaries.
Corollary 2.4.
If n is a positive integer, then
\matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{2k}}} = \left\{ {\matrix{ { - 2{F_n},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{n - 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{n - 2k + \delta }} = {F_{n + \delta }},} } \hfill \cr }
where
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Corollary 2.5.
If n is a positive integer, then
\matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + 1}}} = \left\{ {\matrix{ {{L_{n - 1}} - {{( - 1)}^n}3,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n - 1}} + {{( - 1)}^n}2,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + 1}}} = \left\{ {\matrix{ {{L_{n + 1}} + {{( - 1)}^n}3,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + 1}} - {{( - 1)}^n}2,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k}}} = \left\{ {\matrix{ {{L_n} - {{( - 1)}^n}4,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_n} + {{( - 1)}^n},} \hfill & {otherwise.} \hfill \cr } } \right.} \hfill \cr }
Lemma 2.6.
If n is an integer, then
(2.6)
{{\sin \left( {n\pi /5} \right)} \over {\sin \left( {\pi /5} \right)}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {n/5} \right\rfloor }}}\alpha ,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
(2.7)
{{\sin \left( {3n\pi /5} \right)} \over {\sin \left( {3\pi /5} \right)}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}\beta ,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
From Lemma 2.6 we can deduce the following Lucas and Fibonacci binomial identities modulo 5.
Theorem 2.7.
If n is a positive integer and t is any integer, then
(2.8)
\sum\limits_{k = 0}^{^{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{{n - k} \cr k \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{{{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{L_t},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr } } \right.
(2.9)
\sum\limits_{k = 0}^{^{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{{n - k} \cr k \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{{{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{F_t},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}{F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod} \;5} \right).} \hfill \cr } } \right.
Proof
Set x = π/5 in (2.2), use (2.6), (2.5) and simplify.
A variant of the Lucas and Fibonacci sums with even subscripts is stated as the next corollary.
Corollary 2.8.
If n is a positive integer, then
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{2k}} = } \left\{ {\matrix{ {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}}{L_n},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor + 1}}}{L_{n - 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{2k}} = } \left\{ {\matrix{ {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}}{F_n},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor + 1}}}{F_{n - 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Corollary 2.9.
If n is a positive integer, then
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k + 1}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}},} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k - \delta }}} = 0,} \hfill \cr }
where
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;or\;3} \hfill & {\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {\;if\;n \equiv 1\;or\;2} \hfill & {\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
3.Fibonacci sums modulo 5 from Waring formulas
This section is based on utilizing the following trigonometric identities with the use of Waring formulas.
Lemma 3.1.
(3.1)
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k}}x} = \cos nx,
(3.2)
\sum\limits_{k = 0}^{{\left( {n - 1} \right)/2}} {{{( - 1)}^{\left( {n - 1} \right)/2 - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{{\sin }^{n - 2k}}} x = \sin nx,\;\;\;n\;odd,
(3.3)
\sum\limits_{k = 0}^{{n/2}} {{{( - 1)}^{n/2 - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{\rm{si}}{{\rm{n}}^{n - 2k}}x = {{\cos}}\,nx,} \;\;\;n\;even.
Proof
Consider the Waring formula
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){{({x_1} + {x_2})}^{n - 2k}}{{({x_1}{x_2})}^k} = x_1^n + x_2^n} .
Let i be the imaginary unit. The choice x1 = eix/2, x2 = e−ix/2 produces (3.1), while the choice x1 = eix/(2i), x2 = −e−ix/(2i) gives x1 + x2 = sin x, x1x2 = 1/4, and
x_1^n + x_2^n = \left\{ {\matrix{ {{{( - 1)}^{\left( {n - 1} \right)/2}}{2^{1 - n}}\;\sin nx,} \hfill & {{\rm{if}}\;n\;{\rm{is}}\;{\rm{odd}},} \hfill \cr {{{( - 1)}^{n/2}}{2^{1 - n}}\cos nx,} \hfill & {{\rm{if}}\;n\;{\rm{is}}\;{\rm{even}},} \hfill \cr } } \right.
and hence (3.2) and (3.3).
Lemma 3.2.
If n is a positive integer, then
(3.4)
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\cos }^{n - 2k}}x} = {{\sin \left( {\left( {n + 1} \right)x} \right)} \over {\sin x}},} \hfill \cr {\sum\limits_{k = 0}^{{\left( {n - 1} \right)/2}} {{{( - 1)}^{\left( {n - 1} \right)/2 - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\sin }^{n - 2k}}x} = {{\sin \left( {\left( {n + 1} \right)x} \right)} \over {\cos x}},\;\;\;n\;odd,} \hfill \cr {\sum\limits_{k = 0}^{{n/2}} {{{( - 1)}^{n/2 - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\sin }^{n - 2k}}x} = {{\cos \left( {\left( {n + 1} \right)x} \right)} \over {\cos x}},\;\;\;n\;even.} \hfill \cr }
Proof
Similar to the proof of Lemma 3.1. We use the dual to the Waring formula
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){{({x_1} + {x_2})}^{n - 2k}}{{({x_1}{x_2})}^k}} = {{x_1^{n + 1} - x_2^{n + 1}} \over {{x_1} - {x_2}}}.
Theorem 3.3.
If n is a positive integer and t is any integer, then
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{ {2{F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{ {2{L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
We apply equation (3.1). Inserting x = π/5 and x = 3π/5, respectively, and keeping in mind the trigonometric identity cos 3x = 4 cos3 x−3 cos x we end with
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){\alpha ^{n - 2k + t}}} = \left\{ {\matrix{ {2{\alpha ^t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\alpha ^{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{\alpha ^{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
and
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){\beta ^{n - 2k + t}}} = \left\{ {\matrix{ {2{\beta ^t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^t}\left( {{\alpha ^3} - 3\alpha } \right),} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^t}\left( {{\beta ^3} - 3\beta } \right),} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
To complete the proof simplify the terms in brackets and combine according the Binet formulas.
From Theorem 3.3 we can immediately obtain the following finite binomial sums.
Corollary 3.4.
If n is a positive integer, then
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n - 2k}}} = \left\{ {\matrix{ {4,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr }
and
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n + 1 - 2k}}} = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n + 1 - 2k}}} = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 0,2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 3,} \hfill & {otherwise.} \hfill \cr } } \right.} \hfill \cr }
Remark
Identities (2.8) and (2.9) in Theorem 2.7 can also be obtained straightforwardly by evaluating the trigonometric identity (3.4) at x = π/5 and x = 3π/5, respectively, while using (2.6) and (2.7).
4.Fibonacci sums modulo 5 from Chebyshev polynomials
For any integer n ≥ 0, the Chebyshev polynomials {Tn(x)}n≥0 of the first kind are defined by the second-order recurrence relation [16]
\matrix{ {{T_{n + 1}}\left( x \right) = 2x{T_n}\left( x \right) - {T_{n - 1}}\left( x \right),} \hfill & {n \ge 2,} \hfill & {{T_0}\left( x \right) = 1,} \hfill & {{T_1}\left( x \right) = x,} \hfill \cr } ,
while the Chebyshev polynomials {Un(x)}n≥0 of the second kind are defined by
\matrix{ {{U_{n + 1}}\left( x \right) = 2x{U_n}\left( x \right) - {U_{n - 1}}\left( x \right),} \hfill & {n \ge 2,} \hfill & {{U_0}\left( x \right) = 1,} \hfill & {{U_1}\left( x \right) = 2x.} \hfill \cr } ,
The Chebyshev polynomials possess the representations
\matrix{ {{T_n}\left( x \right) = \sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {\left( {\matrix{ n \cr {2k} \cr } } \right){{({x^2} - 1)}^k}{x^{n - 2k}}} ,} \hfill \cr {{U_n}\left( x \right) = \sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {\left( {\matrix{ {n + 1} \cr {2k + 1} \cr } } \right){{({x^2} - 1)}^k}{x^{n - 2k}}} ,} \hfill \cr }
and have the exact Binet-like formulas
\matrix{ {{T_n}\left( x \right) = {1 \over 2}\left( {{{(x + \sqrt {{x^2} - 1} )}^n} + {{(x - \sqrt {{x^2} - 1} )}^n}} \right),} \hfill \cr {{U_n}\left( x \right) = {1 \over {2\sqrt {{x^2} - 1} }}\left( {{{(x + \sqrt {{x^2} - 1} )}^{n + 1}} - {{(x - \sqrt {{x^2} - 1} )}^{n + 1}}} \right).} \hfill \cr }
The properties of Chebyshev polynomials of the first and second kinds have been studied extensively in the literature. The reader can find in the recent papers [7, 8, 11, 14, 15, 19] additional information about them, especially about their products, convolutions, power sums as well as their connections to Fibonacci numbers and polynomials.
Lemma 4.1.
For all x ∈ ℂ and a positive integer n, we have the following identities:
(4.1)
n\sum\limits_{k = 0}^n {{{( - 1)}^k}{{{4^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\sin }^{2k}}\left( {{x \over 2}} \right)} = \cos nx,
(4.2)
n\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{{{4^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k}}\left( {{x \over 2}} \right)} = \cos nx.
Proof
Identities (4.1) and (4.2) are consequences of the identity
(4.3)
n\sum\limits_{k = 0}^n {{{{{( - 2)}^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {1 \mp x} \right)}^k}} = {\left( { \pm 1} \right)^n}{T_n}\left( x \right)
derived in [3].
Lemma 4.2.
If n is a non-negative integer, then
\matrix{ {{T_n}\left( { - {\alpha \over 2}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {{T_n}\left( { - {\beta \over 2}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Evaluate the identity Tn(cos x) = cos nx at x = 4π/5 and x = 2π/5, in turn.
Theorem 4.3.
If n is a positive integer and t is any integer, then
(4.4)
\matrix{ {\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^k}{F_{2k + t - 1}}} } \hfill \cr { - \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^k}{L_{2k + t}}} = \left\{ {\matrix{ { - {L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t - 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr }
(4.5)
\matrix{ {\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^{k - 1}}{L_{2k + t - 1}}} } \hfill \cr { - \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^k}{F_{2k + t}}} = \left\{ {\matrix{ { - {F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t - 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Using x = −α/2 and x = −β/2, in turn, in (4.3) with the upper sign gives, in view of Lemma 4.2,
\sum\limits_{k = 0}^n {{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {\sqrt 5 } \right)}^k}\left( {{{\left( { - 1} \right)}^{k + 1}}\lambda {\alpha ^{k + t}} - {\beta ^{k + t}}} \right)} = \left\{ {\matrix{ { - \left( {\lambda {\alpha ^t} + {\beta ^t}} \right),} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( {\lambda {\alpha ^{t + 1}} + {\beta ^{t + 1}}} \right)/2,} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \left( {\lambda {\alpha ^{t - 1}} + {\beta ^{t - 1}}} \right)/2,} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
from which (4.4) and (4.5) now follow upon setting λ = 1 and λ = −1, in turn, and using the Binet formulas and the summation identity
\sum\limits_{j = 0}^n {{f_j}} = \sum\limits_{j = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{f_{2j}}} + \sum\limits_{j = 1}^{{\left\lceil {n/2} \right\rceil }} {{f_{2j - 1}}} .
We observe the following special cases of the prior result.
Corollary 4.4.
If n is a positive integer, then
\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^k}{L_{2k + \delta - 1}}} = \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^{k + 1}}{F_{2k + \delta }}} ,
where
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Theorem 4.5.
If n is a positive integer and t is any integer, then
\matrix{ {\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} = \left\{ {\matrix{ {{L_t},} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t - 1}}/2,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}}/2,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {{F_t},} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t - 1}}/2,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}}/2,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π/5 in (4.1) and use (2.3) and the fact that sin(π/10) = −β/2 to obtain
\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){\beta ^{2k + t}}} = \left\{ {\matrix{ {{\beta ^t},} \hfill & {{\rm if}\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{\beta ^{t - 1}}/2,} \hfill & {{\rm if}\;n = 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^{t + 1}}/2,} \hfill & {{\rm if}\;n = 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
from which the results follow by (2.5).
Using Theorem 4.5, we have the following binomial Fibonacci identities modulo 5.
Corollary 4.6.
If n is a positive integer, then
\sum\limits_{k = 0}^n {{{{{\left( { - 1} \right)}^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + \delta }}} = 0,
where
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Lemma 4.7.
If x is a complex variable and n is a positive integer, then
(4.6)
\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\sin }^{2k - 2}}\left( {{x \over 2}} \right)} = {{2\sin nx} \over {\sin x}},
(4.7)
\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k - 2}}\left( {{x \over 2}} \right)} = {{2\sin nx} \over {\sin x}}.
Proof
Identities (4.6) and (4.7) come from the following identities derived in [3]:
\matrix{ {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{2^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {1 \mp x} \right)}^{k - 1}}} = {{\left( { \mp 1} \right)}^{n - 1}}{U_{n - 1}}\left( x \right)}, \hfill \cr {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){x^{2k - 1}}} = {U_{2n - 1}}\left( x \right)}. \hfill \cr }
Theorem 4.8.
If n is a positive integer and n is any integer, then
\matrix{ {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}{L_{t + 2}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor + 1}}{L_{t + 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} } \hfill \cr {\sum\limits_{k = 1}^n {{{( - 1)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}{F_{t + 2}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor + 1}}{F_{t + 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π/5 and x = 3π/5, respectively, in (4.6), and use (2.6) and (2.7).
Remark
Theorem 4.8 can also be proved using (4.7). Using the trigonometric identities sin 2x = 2 sin x cos x and cos 3x = 4 cos3 x − 3 cos x and working with x = 2π/5 and x = 6π/5, respectively, we end with
2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k - 1 + t}}} = \left\{ {\matrix{ {0,} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( {{\alpha ^{t + 1}} - {\beta ^{t - 3}} + 3{\beta ^{t - 1}}} \right),} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {n/5} \right\rfloor }}}\left( { - {\alpha ^t} + {\beta ^{t + 4}} - 3{\beta ^{t + 2}}} \right),} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
and
2\sqrt 5 \sum\limits_{k = 1}^n {{{( - 1)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - 1 + t}}} = \left\{ {\matrix{ {0,} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( {{\alpha ^{t + 1}} + {\beta ^{t - 3}} - 3{\beta ^{t - 1}}} \right),} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( { - {\alpha ^t} - {\beta ^{t + 4}} + 3{\beta ^{t + 2}}} \right),} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
To get Theorem 4.8 simplify the terms in brackets and replace t by t + 1.
Applying Theorem 4.8 yields the following two corollaries.
Corollary 4.9.
If n is a positive integer, then
\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - \delta }} = 0} ,
where
\delta = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 1\;or\;4} \hfill & {\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3} \hfill & {\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Corollary 4.10.
If n is a positive integer and t is any integer, then we have:
If n ≡ 0 (mod 5), then
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} ,} \hfill \cr }
if n ≡ 1 or 4 (mod 5), then
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k + 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k - 1 + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k + 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - 1 + t}}} ,} \hfill \cr }
if n ≡ 2 or 3 (mod 5), then
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + 1 + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + 1 + t}}} .} \hfill \cr }
Proof
Compare Theorem 4.8 with Theorem 2.7.
Lemma 4.11.
If n is a non-negative integer, then
(4.8)
\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}{4^k}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k}}x} = {{\sin \left( {\left( {2n + 1} \right)x} \right)} \over {\sin x}}.
Proof
Evaluate the identity [3]
\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}{4^k}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){x^{2k}}} = {U_{2n}}\left( x \right)
at x = cos x.
Lemma 4.12.
If n is an integer, then
{{\sin \left( {\left( {2n + 1} \right)\pi /5} \right)} \over {\sin \left( {\pi /5} \right)}} = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {\alpha ,} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha ,} \hfill & {if\;n \equiv 3} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 4} \hfill & {\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
From Lemmas 4.11 and 4.12 we can deduce the following Fibonacci and Lucas binomial identities modulo 5.
Theorem 4.13.
If n is a non-negative integer and t is any integer, then
\matrix{ {\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} = \left\{ {\matrix{ {{L_t},} \hfill & {if\;n \equiv 0\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}},} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}},} \hfill & {if\;n \equiv 3\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_t},} \hfill & {if\;n \equiv 4\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {{F_t},} \hfill & {if\;n \equiv 0} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}},} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}},} \hfill & {if\;n \equiv 3\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_t},} \hfill & {if\;n \equiv 4} \hfill & {\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π/5 in (4.8) and use Lemma 4.12.
Lemma 4.14 ([
10, (41.2.16.1)]).
If n is a positive integer and x is any variable, then
(4.9)
\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\cos x - \cos \left( {\pi k/n} \right)}}} = {1 \over 2}\left( {{1 \over {1 - \cos x}} + {{{{( - 1)}^n}} \over {1 + \cos x}}} \right) - {n \over {\sin x\sin nx}}.
Further interesting identities involving Fibonacci and Lucas numbers are stated in the next theorem.
Theorem 4.15.
If n is a positive integer and t is any integer, then
\matrix{ {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {{L_{t - 1}} + 2{L_t}\cos \left( {\pi k/n} \right)} \right)} \over {4\,{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} } \hfill \cr {\; = {1 \over 2}({L_{t + 2}} + \left( { - 1{)^n}{F_{t - 1}}} \right) - 2{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}n.\left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_t},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {{F_{t - 1}} + 2{F_t}\cos \left( {\pi k/n} \right)} \right)} \over {4\,{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} } \hfill \cr {\; = {1 \over 2}\left( {{F_{t + 2}} + {{{{( - 1)}^n}} \over 5}{L_{t - 1}}} \right) - {{2{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_t},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π/5 and x = 3π/5, in turn, in (4.9) to obtain
2\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\alpha - 2\cos \left( {\pi k/n} \right)}}} = {1 \over {2 - \alpha }} + {{{{( - 1)}^n}} \over {2 + \alpha }} - {{4n\alpha } \over {\sqrt 5 }}{{\sin \left( {\pi /5} \right)} \over {\sin \left( {n\pi /5} \right)}}
and
2\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\beta - 2\cos \left( {\pi k/n} \right)}}} \; = {1 \over {2 - \beta }} + {{{{( - 1)}^n}} \over {2 + \beta }} + {{4n\beta } \over {\sqrt 5 }}{{\sin \left( {3\pi /5} \right)} \over {\sin \left( {3n\pi /5} \right)}},
from which the identities follow.
By setting t = 0 and t = 1 in Theorem 4.15, we obtain the following.
Corollary 4.16.
If n is a positive integer, then
\matrix{ {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {4\cos \left( {\pi k/n} \right) - 1} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{3 + {{( - 1)}^n}} \over 2} - 2{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0,2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{5 - {{( - 1)}^n}} \over {10}} - {{2{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}{{\cos }^2}\left( {\pi k/2n} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {1 \over 2} - {{{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 2}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\cos \left( {\pi k/n} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{5 + {{( - 1)}^n}} \over {10}} - {{{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {3,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }