Have a personal or library account? Click to login
The Resolvent of Impulsive Singular Hahn–Sturm–Liouville Operators Cover

The Resolvent of Impulsive Singular Hahn–Sturm–Liouville Operators

Open Access
|Jan 2024

References

  1. B.P. Allahverdiev and H. Tuna, A representation of the resolvent operator of singular Hahn–Sturm–Liouville problem, Numer. Funct. Anal. Optim. 41 (2020), no. 4, 413–431.
  2. R.Kh. Amirov and A.S. Ozkan, Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary condition, Math. Phys. Anal. Geom. 17 (2014), no. 3–4, 483–491.
  3. M.H. Annaby, A.E. Hamza, and K.A. Aldwoah, Hahn difference operator and associated Jackson–Nörlund integrals, J. Optim. Theory Appl. 154 (2012), no. 1, 133–153.
  4. M.H. Annaby, A.E. Hamza, and S.D. Makharesh, A Sturm–Liouville theory for Hahn difference operator, in: M.Z. Nashed and X. Li (Eds.), Frontiers in Orthogonal Polynomials and q-Series, World Scientific, Singapore, 2018, pp. 35–83.
  5. M.H. Annaby, Z.S. Mansour, and I.A. Soliman, q-Titchmarsh–Weyl theory: series expansion, Nagoya Math. J. 205 (2012), 67–118.
  6. K. Aydemir, H. Olǧar, and O.Sh. Mukhtarov, The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem, Turk. J. Math. Comput. Sci. 11 (2019), no. 2, 97–100.
  7. K. Aydemir, H. Olǧar, O.Sh. Mukhtarov, and F. Muhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat 32 (2018), no. 3, 921–931.
  8. F.A. Çetinkaya, A discontinuous q-fractional boundary value problem with eigenparameter dependent boundary conditions, Miskolc Math. Notes 20 (2019), no. 2, 795–806.
  9. Y. Guldu, R.Kh. Amirov, and N. Topsakal, On impulsive Sturm–Liouville operators with singularity and spectral parameter in boundary conditions, Ukrainian Math. J. 64 (2013), no. 12, 1816–1838.
  10. W. Hahn, Beitraäge zur Theorie der Heineschen Reihen. Die 24 Integrale der hyper-geometrischen q-Differenzengleichung. Das q-Analogon der Laplace–Transformation, Math. Nachr. 2 (1949), 340–379.
  11. W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math. 95 (1983), no. 1, 19–24.
  12. D. Karahan, On a q-analogue of the Sturm–Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 26 (2022), no. 3, 407–418.
  13. D. Karahan and Kh.R. Mamedov, Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditions, J. Contemp. Appl. Math. 10 (2020), no. 2, 40–48.
  14. D. Karahan and Kh.R. Mamedov, On a q-boundary value problem with discontinuity conditions, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 13 (2021), no. 4, 5–12.
  15. A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Dover Publications, New York, 1970.
  16. B.M. Levitan and I.S. Sargsjan, Sturm–Liouville and Dirac Operators, Math. Appl. (Soviet Ser.), 59, Kluwer Academic Publishers Group, Dordrecht, 1991.
  17. A.V. Likov and Yu.A. Mikhailov, The Theory of Heat and Mass Transfer (in Russian), Qosenerqoizdat, 1963.
  18. S. Mosazadeh, Spectral properties and a Parseval’s equality in the singular case for q-Dirac problem, Adv. Difference Equ. (2019), Paper No. 522, 14 pp. DOI: 10.1186/s13662-019-2464-y.
  19. O. Mukhtarov, H. Olǧar, and K. Aydemir, Eigenvalue problems with interface conditions, Konuralp J. Math. 8 (2020), no. 2, 284–286.
  20. M.A. Naimark, Linear Differential Operators, 2nd ed., Izdat. Nauka, Moscow, 1969; English transl. of 1st. ed., 1,2, New York, 1968.
  21. N. Palamut Kosar, On a spectral theory of singular Hahn difference equation of a Sturm–Liouville type problem with transmission conditions, Math. Methods Appl. Sci. 46 (2023), no. 9, 11099–11111.
  22. E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, Clarendon Press, Oxford, 1962.
  23. Y.P. Wang and H. Koyunbakan, On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problems, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 6, 985–992.
  24. H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen, Math. Ann. 68 (1910), no. 2, 220–269.
DOI: https://doi.org/10.2478/amsil-2024-0001 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 23 - 41
Submitted on: Oct 5, 2023
Accepted on: Jan 3, 2024
Published on: Jan 18, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2024 Bilender P. Allahverdiev, Hüseyin Tuna, Hamlet A. Isayev, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.