References
- B.P. Allahverdiev and H. Tuna, A representation of the resolvent operator of singular Hahn–Sturm–Liouville problem, Numer. Funct. Anal. Optim. 41 (2020), no. 4, 413–431.
- R.Kh. Amirov and A.S. Ozkan, Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary condition, Math. Phys. Anal. Geom. 17 (2014), no. 3–4, 483–491.
- M.H. Annaby, A.E. Hamza, and K.A. Aldwoah, Hahn difference operator and associated Jackson–Nörlund integrals, J. Optim. Theory Appl. 154 (2012), no. 1, 133–153.
- M.H. Annaby, A.E. Hamza, and S.D. Makharesh, A Sturm–Liouville theory for Hahn difference operator, in: M.Z. Nashed and X. Li (Eds.), Frontiers in Orthogonal Polynomials and q-Series, World Scientific, Singapore, 2018, pp. 35–83.
- M.H. Annaby, Z.S. Mansour, and I.A. Soliman, q-Titchmarsh–Weyl theory: series expansion, Nagoya Math. J. 205 (2012), 67–118.
- K. Aydemir, H. Olǧar, and O.Sh. Mukhtarov, The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem, Turk. J. Math. Comput. Sci. 11 (2019), no. 2, 97–100.
- K. Aydemir, H. Olǧar, O.Sh. Mukhtarov, and F. Muhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat 32 (2018), no. 3, 921–931.
- F.A. Çetinkaya, A discontinuous q-fractional boundary value problem with eigenparameter dependent boundary conditions, Miskolc Math. Notes 20 (2019), no. 2, 795–806.
- Y. Guldu, R.Kh. Amirov, and N. Topsakal, On impulsive Sturm–Liouville operators with singularity and spectral parameter in boundary conditions, Ukrainian Math. J. 64 (2013), no. 12, 1816–1838.
- W. Hahn, Beitraäge zur Theorie der Heineschen Reihen. Die 24 Integrale der hyper-geometrischen q-Differenzengleichung. Das q-Analogon der Laplace–Transformation, Math. Nachr. 2 (1949), 340–379.
- W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math. 95 (1983), no. 1, 19–24.
- D. Karahan, On a q-analogue of the Sturm–Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 26 (2022), no. 3, 407–418.
- D. Karahan and Kh.R. Mamedov, Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditions, J. Contemp. Appl. Math. 10 (2020), no. 2, 40–48.
- D. Karahan and Kh.R. Mamedov, On a q-boundary value problem with discontinuity conditions, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 13 (2021), no. 4, 5–12.
- A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Dover Publications, New York, 1970.
- B.M. Levitan and I.S. Sargsjan, Sturm–Liouville and Dirac Operators, Math. Appl. (Soviet Ser.), 59, Kluwer Academic Publishers Group, Dordrecht, 1991.
- A.V. Likov and Yu.A. Mikhailov, The Theory of Heat and Mass Transfer (in Russian), Qosenerqoizdat, 1963.
- S. Mosazadeh, Spectral properties and a Parseval’s equality in the singular case for q-Dirac problem, Adv. Difference Equ. (2019), Paper No. 522, 14 pp. DOI: 10.1186/s13662-019-2464-y.
- O. Mukhtarov, H. Olǧar, and K. Aydemir, Eigenvalue problems with interface conditions, Konuralp J. Math. 8 (2020), no. 2, 284–286.
- M.A. Naimark, Linear Differential Operators, 2nd ed., Izdat. Nauka, Moscow, 1969; English transl. of 1st. ed., 1,2, New York, 1968.
- N. Palamut Kosar, On a spectral theory of singular Hahn difference equation of a Sturm–Liouville type problem with transmission conditions, Math. Methods Appl. Sci. 46 (2023), no. 9, 11099–11111.
- E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, Clarendon Press, Oxford, 1962.
- Y.P. Wang and H. Koyunbakan, On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problems, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 6, 985–992.
- H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen, Math. Ann. 68 (1910), no. 2, 220–269.