3.Main results
Let us consider the following impulsive boundary-value problem (BVP)
(3.1)
- {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}y\left( \zeta \right) + v\left( \zeta \right)y\left( \zeta \right) = \lambda y\left( \zeta \right),\;\;\;\zeta \in \left( {{\omega _0},\;d} \right) \cup\left( {d,\;{1 \over {{q^n}}}} \right),
(3.2)
y\left( {{\omega _0},\;\lambda } \right)\;\cos \;\beta + {D_{ - {\omega \over q},{1 \over q}}}y\left( {{\omega _0},\;\lambda } \right)\;\sin \;\beta = 0,
(3.3)
y\left( {d - } \right) = \eta y\left( {d + } \right),
(3.4)
{D_{ - {\omega \over q},{1 \over q}}}y\left( {d - } \right) = {1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}y\left( {d + } \right),
(3.5)
y\left( {{1 \over {{q^n}}},\;\lambda } \right)\;\cos \;\gamma + {D_{ - {\omega \over q},{1 \over q}}}y\left( {{1 \over {{q^n}}},\;\lambda } \right)\;\sin \;\gamma = 0,
where q ∈ (0, 1), ω0 := ω/ (1 − q), ω > 0, γ, β ∈ ℝ,
{1 \over {{q^n}}} > d
, n ∈ ℕ := {1, 2, 3, . . .}, η > 0, λ ∈ ℂ, y(d±) := limζd± y (ζ) , v is a real-valued continuous function on [ω0, d) ∪ (d, ∞), and has finite limits v(d±).
A similar problem has been studied by the authors without impulsive boundary conditions ([1]).
{H_n} = L_{\omega ,q}^2\left( {{\omega _0},\;d} \right) {^ \dot +} L_{\omega ,q}^2\left( {d,\;{1 \over {{q^n}}}} \right)
,
{1 \over {{q^n}}} > d
,
n \in {\mathbb N}\left( {H = L_{\omega ,q}^2 \left( {\omega _0 ,d} \right) {^ \dot +} L_{\omega ,q}^2 \left( {d,\infty } \right)} \right)
is a Hilbert space endowed with the following inner product
\matrix{
{{{\langle y,\;z\rangle }_n}: = \int_{{\omega _0}}^d {{y^{\left( 1 \right)}}\overline {{z^{\left( 1 \right)}}} {d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{y^{\left( 2 \right)}}\overline {{z^{\left( 2 \right)}}} {d_{\omega ,q}}\zeta } ,} \hfill \cr
{(\langle y,\;z\rangle : = \int_{{\omega _0}}^d {{y^{\left( 1 \right)}}\overline {{z^{\left( 1 \right)}}} {d_{\omega ,q}}\zeta } + \int_d^\infty {{y^{\left( 2 \right)}}\overline {{z^{\left( 2 \right)}}} {d_{\omega ,q}}\zeta )} } \hfill \cr
}
where
y\left( \zeta \right) = \left\{ {\matrix{
{{y^{\left( 1 \right)}}\left( \zeta \right)\;,\;} \hfill & {\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr
{{y^{\left( 2 \right)}}\left( \zeta \right)\;,\;} \hfill & {\zeta \in \left( {d,\;\infty } \right)\;,} \hfill \cr
} } \right.
and
z\left( \zeta \right) = \left\{ {\matrix{
{{z^{\left( 1 \right)}}\left( \zeta \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr
{{z^{\left( 2 \right)}}\left( \zeta \right),} \hfill & {\;\zeta \in \left( {d,\;\infty } \right).} \hfill \cr
} } \right.
Let
\psi \left( {\zeta ,\;\lambda } \right) = \left\{ {\matrix{
{{\psi ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr
{{\psi ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right),\;} \hfill & {\zeta \in \left( {d,\;\infty } \right),} \hfill \cr
} } \right.
and
\theta \left( {\zeta ,\;\lambda } \right) = \left\{ {\matrix{
{{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr
{{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left( {d,\;\infty } \right),} \hfill \cr
} } \right.
be solutions of Eq. (3.1) satisfying the following conditions
\eqalign{
& {\psi ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\cos \;\beta ,\;{D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\sin \;\beta , \cr
& {\theta ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\sin \;\beta ,\;{D_{ - {\omega \over q},{1 \over q}}}{\theta ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = - \;\cos \;\beta , \cr}
and
\matrix{
{\theta \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {\eta \theta \left( {d + ,\;\lambda } \right),} \hfill \cr
{{D_{ - {\omega \over q},{1 \over q}}}\theta \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {{1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}\theta \left( {d + ,\;\lambda } \right),} \hfill \cr
{\psi \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {\eta \psi \left( {d + ,\;\lambda } \right),} \hfill \cr
{{D_{ - {\omega \over q},{1 \over q}}}\psi \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {{1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}\psi \left( {d + ,\;\lambda } \right).} \hfill \cr
}
Then the solution of Eq. (3.1) be represented
\psi \left( {\zeta ,\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right)\theta \left( {\zeta ,\;\lambda } \right)
which satisfies the boundary condition
\matrix{
{\left( {{D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)\; + \;{\ell}\left( {\lambda ,\;{1 \over {{q^n}}}} \right){D_{ - {\omega \over q},{1 \over q}}}{\theta ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)} \right)\;\sin \;\gamma } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\left( {{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right){\theta ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)} \right)\;\cos \;\gamma = 0.} \hfill \cr
}
Hence
{\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right) = - {{{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right){\rm{\;cot\;}}\gamma + {D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right)} \over {\theta \left( 2 \right)\left( {{1 \over {{q^n}}},\lambda } \right){\rm{\;cot\;}}\gamma + {D_{ - {\omega \over q},{1 \over q}}}\theta {\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right)}}.
Lemma 3.1.
Let
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) = \psi \left( {\zeta ,\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right)\theta \left( {\zeta ,\;\lambda } \right),
where
{Z_{{1 \over {{q^n}}}}} \in {H_n}
and
{1 \over {{q^n}}} > d
, n ∈ ℕ. Then, for each nonreal λ, the following relations hold:
\matrix{
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;,\;n \to \infty ,} \hfill \cr
{\int_{{\omega _0}}^d {{{\left| {{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\; \to \int_{{\omega _0}}^d {{{\left| {Z\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^\infty {{{\left| {\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } ,\;\;\;\;n \to \infty .} \hfill \cr
}
Proof
It is immediate that
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) = Z\left( {\zeta ,\;\lambda } \right) + \left[ {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right]\theta \left( {\zeta ,\;\lambda } \right)
where Z(·, λ) ∈ H and m(λ) is the Titchmarsh–Weyl function.
\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right)
varies on a circle with a finite radius
{r_{{1 \over {{q^n}}}}}
in the plane. In the limit-circle case,
\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) \to m\left( \lambda \right)\left( {n \to \infty } \right)
; therefore
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;\;\;\;\left( {n \to \infty } \right).
Hence
\matrix{
{\int_{{\omega _0}}^d {{{\left| {{Z_{{{\left( 1 \right)1} \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{Z_{{{\left( 2 \right)1} \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \to \int_{{\omega _0}}^d {{{\left| {{Z^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^\infty {{{\left| {{Z^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta \;\left( {n \to \infty } \right)} ,} \hfill \cr
}
due to Z(·, λ) ∈ H. In the limit-point case, we find
\matrix{
{\left| {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right| \le {r_{{1 \over {{q^n}}}}}} \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {{\left( {2\;{\mathop{\rm Im}\nolimits} \;\;\lambda \left[ {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right]} \right)}^{ - 1}},} \hfill \cr
}
where Im λ ≠ 0. As
{r_{{1 \over {{q^n}}}}} \to 0
,
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;\left( {n \to \infty } \right)
. Moreover, we have
\matrix{
{\int_{{\omega _0}}^d {{{\left| {\left\{ {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right\}{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\int_d^{{1 \over {{q^n}}}} {{{\left| {\left\{ {\ell\left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right\}{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\; = \;{{\left| {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right|}^2}\left( {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right)} \hfill \cr
{\;\;\;\;\;\;\;\;\;\; \le {{\left( {4{{({\mathop{\rm Im}\nolimits} \;\;\lambda )}^2}\left[ {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right]} \right)}^{ - 1}},} \hfill \cr
}
which implies that
\begin{array}{*{20}c}
{\int_{\omega _0 }^d {\left| {Z_{_{\frac{1}
{{q^n }}} }^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } + \int_d^{\frac{1}
{{q^n }}} {\left| {Z_{\frac{1}
{{q^n }}}^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } } \hfill \\
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \to \int_{\omega _0 }^d {\left| {Z^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } + \int_d^\infty {\left| {Z^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } .} \hfill \\
\end{array}
Let
f \in H_n \left( {\frac{1}{{q^n }} > d,n \in {\mathbb N}} \right)
. Define
(3.6)
\eqalign{
& {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right) = \left\{ {\matrix{
{{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)\theta \left( {\zeta ,\;\lambda } \right),\;} \hfill & {\varsigma \le \zeta ,} \hfill \cr
{\theta \left( {\zeta ,\;\lambda } \right){Z_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\lambda } \right),\;} \hfill & {\varsigma > \zeta ,} \hfill \cr
} } \right. \cr
& \matrix{
{\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;\lambda } \right) = \int_{{\omega _0}}^d {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right){f^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \int_d^{{1 \over {{q^n}}}} {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right){f^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\lambda \in {\mathbb C}} .} \hfill \cr
} \cr}
Without loss of generality, we can assume that λ = 0 is not an eigenvalue of the BVP (3.1)–(3.5). Now let us prove that the resolvent operator is compact.
Theorem 3.2.
{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right)\left( {\lambda = 0} \right)\;({1 \over {{q^n}}} > d,\;n \in {\mathbb N})
defined as (3.6) is a ω, q-Hilbert–Schmidt kernel, i.e.,
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty , \cr
& \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty . \cr}
Proof
By (3.6), it is obvious that
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {d_{\omega ,q}}\zeta \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\varsigma< + \infty , \cr
& \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {d_{\omega ,q}}\zeta \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\varsigma< + \infty , \cr}
due to
{Z_{{1 \over {{q^n}}}}}
, (·, λ), θ (·, λ) ∈ Hn
(\frac{1}{{q^n }} > d,n \in {\mathbb N})
. Hence
(3.7)
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_\omega }_{,q}\varsigma< + \infty , \cr
& \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty . \cr}
Let A {ti} = {xi}, i ∈ ℕ, where
(3.8)
{x_i} = \mathop \sum \nolimits_{k = 1}^\infty {\eta _{ik}}{t_k},\;\,\,i,\;k \in {\rm{\mathbb N}}.
If
(3.9)
\sum\limits_{i,k = 1}^\infty {|{\eta _{ik}}{|^2}< + \infty } ,
then the operator A is compact in l2.
Theorem 3.4.
Let 𝒯 be the ω, q-integral operator 𝒯: Hn → Hn (
\frac{1}{{q^n }} > d,\,n \in {\mathbb N}
),
\left( {{\cal T}f} \right)\left( \zeta \right) = \left\{ {\matrix{
{\mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){f^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr
{\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){f^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\zeta \in \left( {d,\;{1 \over {{q^n}}}} \right],} \hfill \cr
} } \right.
where
f\left( \zeta \right) = \left\{ {\matrix{
{{f^{\left( 1 \right)}}\left( \zeta \right)\;,\;\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr
{{f^{\left( 2 \right)}}\left( \zeta \right)\;,\;\zeta \in \left( {d,\;{1 \over {{q^n}}}} \right].} \hfill \cr
} } \right.
Then 𝒯 is a compact self-adjoint operator in space Hn.
Proof
Let
\varphi _i : = \varphi _i \left( \zeta \right) = \left\{ {\begin{array}{*{20}c}
{\varphi _i^{\left( 1 \right)} \left( \zeta \right),} \hfill & {\zeta \in \left[ {\omega _0 ,d} \right),} \hfill \\
{\varphi _i^{\left( 2 \right)} \left( \zeta \right),} \hfill & {\zeta \in \left( {d,\frac{1}
{{q^n }}} \right],} \hfill \\
\end{array} } \right.\,\,\,\,\,(i,n \in {\mathbb N},\frac{1}
{{q^n }} > d)
be a complete, orthonormal basis of Hn. Let i, k, n ∈ ℕ,
{1 \over {{q^n}}} > d
. Write
\begin{gathered}
t_i = \left\langle {f,\varphi _i } \right\rangle _n = \mathop \smallint \nolimits_{\omega _0 }^d f^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 1 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta \hfill \\
\,\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} f^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 2 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta , \hfill \\
x_i = \langle g,\varphi _i \rangle _n = \mathop \smallint \nolimits_{\omega _0 }^d g^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 1 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta \hfill \\
\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} g^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 2 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta , \hfill \\
\eta _{ik} = \mathop \smallint \nolimits_{\omega _0 }^d \mathop \smallint \nolimits_{\omega _0 }^d G_{\frac{1}
{{q^n }}} \left( {\zeta ,\varsigma } \right)\varphi _i^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _k^{\left( 1 \right)} \left( \varsigma \right)} d_{\omega ,q} \zeta d_{\omega ,q} \varsigma \hfill \\
\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} G_{\frac{1}
{{q^n }}} \left( {\zeta ,\varsigma } \right)\varphi _i^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _k^{\left( 2 \right)} \left( \varsigma \right)} d_{\omega ,q} \zeta d_{\omega ,q} \varsigma . \hfill \\
\end{gathered}
Hn is mapped isometrically on to l2. By this mapping, 𝒯 transforms into the operator A defined by (3.8) in l2 and (3.7) is translated into (3.9). By Theorems 3.2 and 3.3, we see that A and 𝒯 are compact operators.
Let h, g ∈ Hn and
{1 \over {{q^n}}} > d
, n ∈ ℕ. Then we have
\eqalign{
& \matrix{
{{{\left\langle {{\cal T}h,g} \right\rangle }_n}} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d ({\cal T}{h^{\left( 1 \right)}})\left( \zeta \right)\overline {{g^{\left( 1 \right)}}(\zeta } ){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} ({\cal T}{h^{\left( 2 \right)}})\left( \zeta \right)\overline {{g^{\left( 2 \right)}}(\zeta } ){d_{\omega ,q}}\zeta } \hfill \cr
{} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){h^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \overline {{g^{\left( 1 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \hfill \cr
{} \hfill & {\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){h^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \overline {{g^{\left( 2 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \hfill \cr
{} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d {h^{\left( 1 \right)}}\left( \varsigma \right)\left( {\mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\zeta } \right)\overline {{g^{\left( 1 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \right){d_{\omega ,q}}\varsigma } \hfill \cr
{} \hfill & {\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {h^{\left( 2 \right)}}\left( \varsigma \right)\left( {\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\zeta } \right)\overline {{g^{\left( 2 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \right){d_{\omega ,q}}\varsigma } \hfill \cr
{} \hfill & { = {{\left\langle {h,\;Tg} \right\rangle }_n},} \hfill \cr
} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\, \cr}
since
{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\gamma } \right)
is a symmetric function.
From Theorem 3.4, we conclude that 𝒯 has a discrete spectrum. Let
{\lambda _{m,{1 \over {{q^n}}}}}
and
\theta _{m,\frac{1}
{{q^n }}} \left( \zeta \right): = \left\{ {\begin{array}{*{20}c}
{\theta _{m,\frac{1}
{{q^n }}}^{\left( 1 \right)} \left( {\zeta ,\lambda _{m,\frac{1}
{{q^n }}} } \right),\,\,\,\,\,\zeta \in \left[ {\omega _0 ,d} \right),} \hfill \\
{\theta _{m,\frac{1}
{{q^n }}}^{\left( 2 \right)} \left( {\zeta ,\lambda _{m,\frac{1}
{{q^n }}} } \right),\,\,\,\,\zeta \in \left( {d,\frac{1}
{{q^n }}} \right],} \hfill \\
\end{array} } \right.\,\,\,\,\,\,\,(m,n \in \mathbb{N},\,\,\frac{1}
{{q^n }} > d)
be the eigenvalues and eigenfunctions of the BVP (3.1)–(3.5) and
\alpha _{m,{1 \over {{q^n}}}}^2 = \mathop \smallint \nolimits_{{\omega _0}}^d \theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)2}\left( \zeta \right){d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)2}\left( \zeta \right){d_{\omega ,q}}\varsigma .
By Theorem 3.4 and the Hilbert–Schmidt theorem, we infer that
(3.10)
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d |{f^{\left( 1 \right)}}\left( \zeta \right){|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{f^{\left( 2 \right)}}\left( \zeta \right){|^2}{d_{\omega ,q}}\zeta \cr
& = \mathop \sum \nolimits_{m = 1}^\infty {1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}}{\left| {\mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {f^{\left( 2 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|^2}. \cr}
Define
{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) = \left\{ {\matrix{
{ - \sum\limits_{\lambda< {\lambda _{m,{1 \over n}}}< 0} {{1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}}\;,} } \hfill & {{\rm{for}}\;\lambda \le 0,} \hfill \cr
{\sum\limits_{0 \le {\lambda _{m,{1 \over {{q^n}}}}}< \lambda } {{1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}},} } \hfill & {{\rm{for}}\;\lambda > 0.} \hfill \cr
} } \right.
Then, (3.10) can be written as
(3.11)
\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{f^{\left( 2 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta = \mathop \smallint \nolimits_{ - \infty }^\infty |F\left( \lambda \right){|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right),
where
F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {f^{\left( 2 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta .
Lemma 3.5.
For any positive S, there is a positive number B = B (S) not depending on n so that
- \mathop \lor \limits_{{\text{ - }}S}^S \varrho _{\frac{1}
{{q^n }}} \left( \lambda \right) = \sum\limits_{ - S \leqslant \lambda _{m,\frac{1}
{{q^n }}}< S} {\frac{1}
{{\alpha _{m,\frac{1}
{{q^n }}}^2 }} = \varrho _{\frac{1}
{{q^n }}} \left( S \right) - \varrho _{\frac{1}
{{q^n }}} \left( { - S} \right)< B.}
Proof
Let sin β ≠ 0. Since θ(ζ, λ) is continuous in domain −S ≤ λ ≤ S,
\left[ {{\omega _0},\;d} \right) \cup (d,\;{1 \over {{q^n}}}]
, and the condition θ(1)(ω0, λ) = sin β, there exists a positive number h such that for |λ| < S,
(3.12)
{1 \over {{h^2}}}{\left( {\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)^2} > {1 \over 2}{\rm{si}}{{\rm{n}}^2}\beta .
Let
{f_h}\left( \zeta \right) = \left\{ {\matrix{
{{1 \over h},} \hfill & {{\omega _0} \le \zeta \le {\omega _0} + h,} \hfill \cr
{0,} \hfill & {\zeta > {\omega _0} + h.} \hfill \cr
} } \right.
From (3.12), we find
\matrix{
{\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} f_h^2\left( \zeta \right){d_{\omega ,q}}\zeta } \hfill & { = {1 \over h} = \mathop \smallint \nolimits_{ - \infty }^\infty {{\left( {{1 \over h}\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)}^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { \ge \mathop \smallint \nolimits_{ - S}^S {{\left( {{1 \over h}\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)}^2}d{\varrho _\alpha }\left( \lambda \right)} \hfill \cr
{} \hfill & { > {1 \over 2}{\rm{si}}{{\rm{n}}^2}\beta \left\{ {{\varrho _{{1 \over {{q^n}}}}}\left( S \right) - {\varrho _{{1 \over {{q^n}}}}}\left( { - S} \right)} \right\}.} \hfill \cr
}
If sin β = 0, then we define fh(ζ) as
\eqalign{
& {f_h}\left( \zeta \right) = \left\{ {\matrix{
{{1 \over {{h^2}}},} \hfill & {\;{\omega _0} \le \zeta \le {\omega _0} + h,} \hfill \cr
{0,} \hfill & {\zeta > {\omega _0} + h.} \hfill \cr
} } \right. \cr
& \matrix{
{} \hfill \cr
\; \hfill \cr
} \cr}
This proves the lemma.
Now, we will give an expansion into a Fourier series of resolvent. By ω, q-integration by parts, we obtain
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}{y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right) - v\left( \zeta \right){y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right]\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& \,\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}{y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right) - v\left( \zeta \right){y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right]\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& = \mathop \smallint \nolimits_{{\omega _0}}^d \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right)} \right]{y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta \cr
& \,\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right)} \right]{y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta \cr
& = - {\lambda _{m,{1 \over {{q^n}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d {y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta - {\lambda _{m,{1 \over {{q^n}}}}}\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& = - {\lambda _{m,{1 \over {{q^n}}}}}{\varphi _m}\left( \lambda \right), \cr}
where m ∈ ℕ. Let
\eqalign{
& y\left( {\zeta ,\;\lambda } \right) = \sum\limits_{m = 1}^\infty {{\varphi _m}\left( \lambda \right){\psi _{m,{1 \over {{q^n}}}}}\left( \zeta \right),} \cr
& {a_m} = \mathop \smallint \nolimits_{{\omega _0}}^d f\left( \zeta \right)\psi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} f\left( \zeta \right)\psi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta , \cr}
where m ∈ ℕ. Since y(ζ, λ) satisfies the equation
- {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}y\left( {\zeta ,\;\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y\left( {\zeta ,\;\lambda } \right) = f\left( \zeta \right),
we find
\eqalign{
& a_m = \mathop \smallint \nolimits_{\omega _0 }^d \left[ { - \frac{1}
{q}D_{ - \frac{\omega }
{q},\frac{1}
{q}} D_{\omega ,q} y^{\left( 1 \right)} \left( {\zeta ,\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right]\theta _{m,\frac{1}
{{q^n }}}^{\left( 1 \right)} \left( \zeta \right)d_{\omega ,q} \zeta \cr
& \,\,\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} \left[ { - \frac{1}
{q}D_{ - \frac{\omega }
{q},\frac{1}
{q}} D_{\omega ,q} y^{\left( 2 \right)} \left( {\zeta ,\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right]\theta _{m,\frac{1}
{{q^n }}}^{\left( 2 \right)} \left( \zeta \right)d_{\omega ,q} \zeta \cr
& \,\,\,\,\,\,\,\, = \lambda _{m,\frac{1}
{{q^n }}} \varphi _m \left( \lambda \right) - \lambda \varphi _m \left( \lambda \right)\,\,{\text{, }}m,n \in {\mathbb N},\frac{1}
{{q^n }} > d. \cr}
Thus, we get
\varphi _m \left( \lambda \right) = \frac{{a_m }}
{{\lambda _{m,\frac{1}
{{q^n }}} - \lambda }}\,\,\,\,\,\,(m,n \in {\mathbb N},\frac{1}
{{q^n }} > d),
and
y\left( {\zeta ,\;\lambda } \right) = {\left\langle {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;\lambda } \right),\;\overline {f\left( \cdot \right)} } \right\rangle _n} = \sum\limits_{m = 1}^\infty {{{{a_m}{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\lambda _{m,{1 \over {{q^n}}}}} - \lambda }}.}
Hence
(3.13)
\eqalign{
& \left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right) = \sum\limits_{m = 1}^\infty {{{{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {\alpha _{m,{1 \over {{q^n}}}}^2\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}}{{\left\langle {f\left( \cdot \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle }_n}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}\left\{ {{{\left\langle {f\left( \cdot \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle }_n}} \right\}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}
Lemma 3.6.
For each nonreal z and fixed ζ, the following relation holds
(3.14)
\mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)< S.
Proof
Writing
f\left( \varsigma \right) = {{{\theta _{m,{1 \over {{q^n}}}}}\left( \varsigma \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}}}
yields
(3.15)
{1 \over {{\alpha _{m,{1 \over {{q^n}}}}}}}{\left\langle {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;\lambda } \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle _n} = {{{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}},
due to the eigenfunctions
{\theta _{m,{1 \over {{q_n}}}}}(\zeta )
are orthogonal. Combining (3.15) and (3.10), we see that
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\varsigma \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \sum \nolimits_{m = 1}^\infty {{{{\left| {{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \right|}^2}} \over {\alpha _{m,{1 \over {{q^n}}}}^2{{\left| {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right|}^2}}} = \mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}
By Lemma 3.1, the integral on the left converges and the result is immediate.
It follows from Lemma 8 that the set
\left\{ {{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \right\}
is bounded. Using Helly’s theorems ([15]), one can find a sequence {1/qnk} such that
{\varrho _{{1 \over {{q^n}k}}}}\left( \lambda \right)
converges to a monotone function ϱ(λ) (as nk → ∞).
Lemma 3.7.
Let z be a nonreal number and ζ be a fixed number. Then we have
(3.16)
\mathop \int \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d\varrho \left( \lambda \right) \le S.
Proof
For arbitrary η > 0, it follows from (3.14) that
\mathop \int \nolimits_{ - \eta }^\eta {\left| {{{\phi \left( {\varsigma ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)< S.
Letting η → ∞ and n → ∞, we get the desired result.
Lemma 3.8.
For arbitrary η > 0, we have
\mathop \int \nolimits_{ - \infty }^{ - \eta } {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty ,\;\mathop {\,\,\,\,\,\smallint }\nolimits_\eta ^\infty {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty .
Proof
Let sin β ≠ 0. Writing ζ = 0 in (3.16), we obtain
\mathop \int \nolimits_{ - \infty }^\infty {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty .
Let sin β = 0. Then
{1 \over {{\alpha _{m,{1 \over {{q^n}}}}}}}{\left\langle {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;z} \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle _n} = {{{D_{q,\zeta }}{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}}.
By (3.11), we find
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{{D_{q,\zeta }}\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}
Lemma 3.9.
Let
\left( {Rf} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{{\omega _0}}^\infty G\left( {\zeta ,\;\varsigma ,\;z} \right)f\left( \varsigma \right){d_{\omega ,q}}\varsigma ,
where f ∈ H, and
G\left( {\zeta ,\;\varsigma ,\;z} \right) = \left\{ {\matrix{
{Z\left( {\zeta ,\;z} \right)\theta \left( {\varsigma ,\;z} \right),} \hfill & {\;\varsigma \le \zeta ,\;\,\,\,\,\zeta \ne d,\;\,\,\,\varsigma \ne d,} \hfill \cr
{\theta \left( {\zeta ,\;z} \right)Z\left( {\varsigma ,\;z} \right)\;,} \hfill & {\;\varsigma > \zeta ,\;\,\,\,\,\zeta \ne d,\;\,\,\varsigma \ne d.} \hfill \cr
} } \right.
Then, we have
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d |\left( {Rf} \right)\left( {\zeta ,\;z} \right){|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\infty |\left( {Rf} \right)\left( {\zeta ,\;z} \right){|^2}{d_{\omega ,q}}\zeta \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le {1 \over {{v^2}}}\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\infty {\left| {{f^{\left( 2 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta , \cr}
where v = Im z.
Proof
Combining (3.13) and (3.10), for each
{1 \over {{q^n}}} > d
, n ∈ ℕ, we obtain
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \sum \nolimits_{m = 1}^\infty {{{{\left| {{{\langle f\left( \cdot \right),{\theta _{m,{1 \over {{q^n}}}}}\left( { \cdot ,z} \right)\rangle }_n}} \right|}^2}} \over {\alpha _{m,{1 \over {{q^n}}}}^2|{\lambda _{m,{1 \over {{q^n}}}}} - z{|^2}}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over {{v^2}}}\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \varsigma \right)} \right|^2}{d_{\omega ,q}}\varsigma + {1 \over {{v^2}}}\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{f^{\left( 2 \right)}}\left( \varsigma \right)} \right|^2}{d_{\omega ,q}}\varsigma . \cr}
Letting n → ∞, we get the desired result.
Theorem 3.10 (Integral Representation of the Resolvent).
For every non-real z and for each f ∈ H, we obtain
\left( {Rf} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}F\left( \lambda \right)d\varrho \left( \lambda \right),
where
F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_d^\sigma {f^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .
Proof
Suppose that f(ζ) = fσ(ζ) satisfies (3.2)–(3.4) and vanishes outside the set [ω0, d) ∪ (d, σ], where
d< \sigma< {1 \over {{q^n}}}
, n ∈ ℕ. Let
{F_\sigma }\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .
By (3.13), we see that
(3.17)
\eqalign{
& \matrix{
{\left( {{R_{{1 \over {{q^n}}}}}{f_\sigma }} \right)\left( {\zeta ,\;z} \right)} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^{ - a} {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) + \mathop \smallint \nolimits_{ - a}^a {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { + \mathop \smallint \nolimits_a^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) = {I_1} + {I_2} + {I_3}.} \hfill \cr
} \cr
& \cr}
Firstly, we will estimate I1. From (3.13), we deduce that
\matrix{
{{I_1}} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^{ - a} {{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { = \sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{{{\theta _{k,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {\alpha _{k,{1 \over {{q^n}}}}^2\left( {z - {\lambda _{k,{1 \over {{q^n}}}}}} \right)}}\left\{ {\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right\}} } \hfill \cr
{} \hfill & { \le {{\left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{{\theta _{k,{1 \over {{q^n}}}}^2\left( \zeta \right)} \over {\alpha _{k,{1 \over {{q^n}}}}^2{{\left| {z - {\lambda _{k,{1 \over {{q^n}}}}}} \right|}^2}}}} } \right)}^{1/2}}} \hfill \cr
{} \hfill & { \times {{\left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{1 \over {\alpha _{k,{1 \over {{q^n}}}}^2}}{{\left| {\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|}^2}} } \right)}^{1/2}}.} \hfill \cr
}
Integrating twice by parts, we find
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& = - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right) - v\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right)} \right\}{d_{\omega ,q}}\zeta \cr
& - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right) - v\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right)} \right\}{d_{\omega ,q}}\zeta \cr
& = - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_d^\sigma \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta . \cr}
By Lemma 3.6, we get
\matrix{
{{I_1}} \hfill & { \le {{{K^{1/2}}} \over a}} \hfill \cr
{} \hfill & { \times \left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{1 \over {\alpha _{k,{1 \over {{q^n}}}}^2}}\mathop \smallint \nolimits_{{\omega _0}}^d \{ {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\} \theta _{k,{{{_1}} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta } } \right.} \hfill \cr
{} \hfill & {\,\,\,{{\left. {{{\left. {\, + \mathop \smallint \nolimits_d^\sigma \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|}^2}} \right)}^{1/2}}.} \hfill \cr
}
Using Bessel inequality, we see that
\eqalign{
& {I_1} \le {{{K^{1/2}}} \over a}\left[ {\mathop \smallint \nolimits_{{\omega _0}}^\sigma {{\left| {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)} \right|}^2}{d_{\omega ,q}}\zeta } \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\left. {\mathop \smallint \nolimits_d^\sigma {{\left| {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right|}^2}{d_{\omega ,q}}\zeta } \right]^{1/2}} = {C \over a}. \cr}
It is proved similarly that
{I_3} \le {C \over a}
. Then I1 and I3 tend to zero as a → ∞, uniformly in
{1 \over {{q_n}}}
. It follows from the Helly selection theorem and (3.17) that
(3.18)
\left( {R{f_\sigma }} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}{F_\sigma }\left( \lambda \right)d\varrho \left( \lambda \right).
As is known, if f(·) ∈ H, then we find a sequence
\left\{ {{f_\sigma }\left( \varsigma \right)} \right\}_{\sigma = 1}^\infty
that satisfies the previous conditions and tends to f(ζ) as σ → ∞. From (3.10), the sequence of Fourier transform converges to the transform of f(ζ). Using Lemmas
3.7 and 3.9, we can pass to the limit σ → ∞ in (3.18). Thus, we get the desired result.
Remark 3.11.
Using Theorem 3.10, we infer that
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^\infty (R{f^{\left( 1 \right)}})\left( {\varsigma ,\;z} \right){g^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^\infty (R{f^{\left( 2 \right)}})\left( {\varsigma ,\;z} \right){g^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {{F\left( \lambda \right)G\left( \lambda \right)} \over {z - \lambda }}d\varrho \left( \lambda \right), \cr}
where
F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_d^\sigma {f^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta ,
and
G\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {g^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_{{\omega _0}}^\sigma {g^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .