Have a personal or library account? Click to login
Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces Cover

Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces

Open Access
|Jul 2023

References

  1. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
  2. S.S. Dragomir, Reverses of operator Féjer’s inequalities, Tokyo J. Math. 44 (2021), no. 2, 351–366.
  3. J.I. Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), no. 3, 301–306.
  4. T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra Appl. 429 (2008), no. 5–6, 972–980.
  5. T. Furuta, Precise lower bound of f(A)−f(B) for A > B > 0 and non-constant operator monotone function f on [0, 1), J. Math. Inequal. 9 (2015), no. 1, 47–52.
  6. E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415–438.
  7. K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177–216.
  8. M.S. Moslehian and H. Najafi, An extension of the Löwner-Heinz inequality, Linear Algebra Appl. 437 (2012), no. 9, 2359–2365.
  9. H. Zuo and G. Duan, Some inequalities of operator monotone functions, J. Math. Inequal. 8 (2014), no. 4, 777–781.
DOI: https://doi.org/10.2478/amsil-2023-0008 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 248 - 265
Submitted on: Sep 27, 2022
Accepted on: Jun 5, 2023
Published on: Jul 26, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Silvestru Sever Dragomir, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.