Have a personal or library account? Click to login
Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces Cover

Gradient Inequalities for an Integral Transform of Positive Operators in Hilbert Spaces

Open Access
|Jul 2023

Abstract

For a continuous and positive function w (λ) , λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform 𝒟(w,μ)(T):=0w(λ)(λ+T)-1dμ(λ), \mathcal{D}\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda \right){{\left( {\lambda + T} \right)}^{ - 1}}d\mu \left( \lambda \right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H.

Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some constants α, δ, m, M. Then 0-m𝒟(w,μ)(δ)𝒟(w,μ)(A)-𝒟(w,μ)(B)-M𝒟(w,μ)(α), 0 \le - m\mathcal{D}'\left( {w,\mu } \right)\left( \delta \right) \le \mathcal{D}\left( {w,\mu } \right)\left( A \right) - \mathcal{D}\left( {w,\mu } \right)\left( B \right) \le - M\mathcal{D}'\left( {w,\mu } \right)\left( \alpha \right), where D(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0.

If f : [0, ) → ℝ is operator monotone on [0, ) with f (0) = 0, then 0mδ2[ f(δ)-f(δ)δf(A)A-1-f(B)B-1 ]Mα2[ f(α)-f(α)α ]. \matrix{ {0 \le {m \over {{\delta ^2}}}\left[ {f\left( \delta \right) - f'\left( \delta \right)\delta \le f\left( A \right){A^{ - 1}} - f{{\left( B \right)}^{B - 1}}} \right]} \cr { \le {M \over {{\alpha ^2}}}\left[ {f\left( \alpha \right) - f'\left( \alpha \right)\alpha } \right].} \cr }

Some examples for operator convex functions as well as for integral transforms D (·, ·) related to the exponential and logarithmic functions are also provided.

DOI: https://doi.org/10.2478/amsil-2023-0008 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 248 - 265
Submitted on: Sep 27, 2022
Accepted on: Jun 5, 2023
Published on: Jul 26, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Silvestru Sever Dragomir, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.