Have a personal or library account? Click to login
On a Functional Equation Appearing on the Margins of a Mean Invariance Problem Cover

On a Functional Equation Appearing on the Margins of a Mean Invariance Problem

Open Access
|Jul 2020

References

  1. [1] M. Bajraktarević, Sur une équation fonctionelle aux valeurs moyennes, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske. Ser. II 13 (1958), 243–248.
  2. [2] P. Burai, A Matkowski-Sutô type equation, Publ. Math. Debrecen 70 (2007), 233–247.10.5486/PMD.2007.3622
  3. [3] Z. Daróczy, Gy. Maksa and Zs. Páles, On two variable means with variable weights, Aequationes Math. 67 (2004), 154–159.10.1007/s00010-003-2693-7
  4. [4] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar. 90 (2001), 271–282.10.1023/A:1010641702978
  5. [5] Z. Daróczy and Zs. Páles, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), 157–218.10.5486/PMD.2002.2713
  6. [6] Z. Daróczy and Zs. Páles, A Matkowski-Sutô problem for weight quasi-arithmetic means, Ann. Univ. Sci. Budapest. Sci. Comput. 22 (2003), 69–81.
  7. [7] J. Domsta and J. Matkowski, Invariance of the arithmetic mean with respect to special mean-type mappings, Aequationes Math. 71 (2006), 70–85.10.1007/s00010-005-2791-9
  8. [8] J. Jarczyk, Invariance in the class of weighted quasi-arithmetic means with continuous generators, Publ. Math. Debrecen 71 (2007), 279–294.10.5486/PMD.2007.3625
  9. [9] J. Jarczyk, Invariance of quasi–arithmetic means with function weights. J. Math. Anal. Appl. 353 (2009), 134–140.
  10. [10] J. Jarczyk, Invariance in a class of Bajraktarević means, Nonlinear Anal. 72 (2010), 2608–2619.10.1016/j.na.2009.11.008
  11. [11] J. Jarczyk and W. Jarczyk, Invariance of means, Aequationes Math. 92 (2018), 801–872.10.1007/s00010-018-0564-5
  12. [12] J. Jarczyk and J. Matkowski, Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math. 88 (2006), 39–51.10.4064/ap88-1-3
  13. [13] J. Matkowski, Invariant and complementary quasi-arithmetic means. Aequationes Math. 57 (1999), 87–107.
  14. [14] J. Matkowski, Invariance of Bajraktarević mean with respect to quasi-arithmetic means, Publ. Math. Debrecen 80 (2012), 441–45.10.5486/PMD.2012.5151
  15. [15] J. Matkowski, Invariance of Bajraktarević means with respect to the Beckenbach-Gini means, Math. Slovaca 63 (2013), 493–502.10.2478/s12175-013-0111-8
  16. [16] Zs. Páles and A. Zakaria, On the local and global comparison of generalized Bajraktarević means, J. Math. Anal. Appl. 455 (2017), 792–815.10.1016/j.jmaa.2017.05.073
  17. [17] Zs. Páles and A. Zakaria, On the invariance equation for two-variable weighted non-symmetric Bajraktarević means, Aequationes Math. 93 (2019), 37–57.10.1007/s00010-018-0560-9
DOI: https://doi.org/10.2478/amsil-2020-0012 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 96 - 103
Submitted on: Dec 26, 2019
Accepted on: Jun 3, 2020
Published on: Jul 9, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Justyna Jarczyk, Witold Jarczyk, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.