Have a personal or library account? Click to login
On a Functional Equation Appearing on the Margins of a Mean Invariance Problem Cover

On a Functional Equation Appearing on the Margins of a Mean Invariance Problem

Open Access
|Jul 2020

Abstract

Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω:

Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)),x,yI.B_\omega ^\alpha \left({x,y} \right) = {\alpha ^{- 1}}\left({{{\omega \left(x \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(x \right) + {{\omega \left(y \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(y \right)} \right),\,\,\,x,y \in I.

We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation

r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y,r\left(x \right)B_s^\varphi \left({x,y} \right) + r\left(y \right)B_t^\psi \left({x,y} \right) = r\left(x \right)x + r\left(y \right)y,

where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.

DOI: https://doi.org/10.2478/amsil-2020-0012 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 96 - 103
Submitted on: Dec 26, 2019
Accepted on: Jun 3, 2020
Published on: Jul 9, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Justyna Jarczyk, Witold Jarczyk, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.