Have a personal or library account? Click to login
A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space–Fractional Gross–Pitaevskii Equation Cover

A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space–Fractional Gross–Pitaevskii Equation

Open Access
|Dec 2019

References

  1. Alikhanov, A.A. (2015). A new difference scheme for the time fractional diffusion equation, Journal of Computational Physics280: 424–438.10.1016/j.jcp.2014.09.031
  2. Alves, C.O. and Miyagaki, O.H. (2016). Existence and concentration of solution for a class of fractional elliptic equation in ℝn via penalization method, Calculus of Variations and Partial Differential Equations55(3): 47.10.1007/s00526-016-0983-x
  3. Antoine, X., Tang, Q. and Zhang, Y. (2016). On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross–Pitaevskii equations with rotation term and nonlocal nonlinear interactions, Journal of Computational Physics325: 74–97.10.1016/j.jcp.2016.08.009
  4. Bao, W. and Cai, Y. (2013). Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation, Mathematics of Computation82(281): 99–128.10.1090/S0025-5718-2012-02617-2
  5. Ben-Yu, G., Pascual, P.J., Rodriguez, M.J. and Vázquez, L. (1986). Numerical solution of the sine-Gordon equation, Applied Mathematics and Computation18(1): 1–14.10.1016/0096-3003(86)90025-1
  6. Bhrawy, A.H. and Abdelkawy, M.A. (2015). A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, Journal of Computational Physics294: 462–483.10.1016/j.jcp.2015.03.063
  7. El-Ajou, A., Arqub, O.A. and Momani, S. (2015). Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: A new iterative algorithm, Journal of Computational Physics293: 81–95.10.1016/j.jcp.2014.08.004
  8. Fei, Z. and Vázquez, L. (1991). Two energy conserving numerical schemes for the sine-Gordon equation, Applied Mathematics and Computation45(1): 17–30.10.1016/0096-3003(91)90087-4
  9. Furihata, D. (2001). Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, Journal of Computational and Applied Mathematics134(1): 37–57.10.1016/S0377-0427(00)00527-6
  10. Glöckle, W.G. and Nonnenmacher, T.F. (1995). A fractional calculus approach to self-similar protein dynamics, Biophysical Journal68(1): 46–53.10.1016/S0006-3495(95)80157-8
  11. Gross, E.P. (1961). Structure of a quantized vortex in boson systems, Il Nuovo Cimento (1955-1965)20(3): 454–477.10.1007/BF02731494
  12. Iannizzotto, A., Liu, S., Perera, K. and Squassina, M. (2016). Existence results for fractional p-Laplacian problems via Morse theory, Advances in Calculus of Variations9(2): 101–125.10.1515/acv-2014-0024
  13. Kaczorek, T. (2015). Positivity and linearization of a class of nonlinear continuous-time systems by state feedbacks, International Journal of Applied Mathematics and Computer Science25(4): 827–831, DOI: 10.1515/amcs-2015-0059.10.1515/amcs-2015-0059
  14. Koeller, R. (1984). Applications of fractional calculus to the theory of viscoelasticity, ASME Transactions: Journal of Applied Mechanics51: 299–307.10.1115/1.3167616
  15. Liu, F., Zhuang, P., Turner, I., Anh, V. and Burrage, K. (2015). A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain, Journal of Computational Physics293: 252–263.10.1016/j.jcp.2014.06.001
  16. Macías-Díaz, J.E. (2017). A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives, Journal of Computational Physics351: 40–58.10.1016/j.jcp.2017.09.028
  17. Macías-Díaz, J.E. (2018). An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions, Communications in Nonlinear Science and Numerical Simulation59: 67–87.10.1016/j.cnsns.2017.10.019
  18. Macías-Díaz, J.E. (2019). On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme, International Journal of Computer Mathematics96(2): 337–361.10.1080/00207160.2018.1438605
  19. Matsuo, T. and Furihata, D. (2001). Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, Journal of Computational Physics171(2): 425–447.10.1006/jcph.2001.6775
  20. Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of Applied Mathematics25(3): 241–265.10.1093/imamat/25.3.241
  21. Oprz˛edkiewicz, K., Gawin, E. and Mitkowski, W. (2016). Modeling heat distribution with the use of a non-integer order, state space model, International Journal of Applied Mathematics and Computer Science26(4): 749–756, DOI: 10.1515/amcs-2016-0052.10.1515/amcs-2016-0052
  22. Pimenov, V.G. and Hendy, A.S. (2017). A numerical solution for a class of time fractional diffusion equations with delay, International Journal of Applied Mathematics and Computer Science27(3): 477–488, DOI: 10.1515/amcs-2017-0033.10.1515/amcs-2017-0033
  23. Pimenov, V.G., Hendy, A.S. and De Staelen, R.H. (2017). On a class of non-linear delay distributed order fractional diffusion equations, Journal of Computational and Applied Mathematics318: 433–443.10.1016/j.cam.2016.02.039
  24. Pitaevskii, L. (1961). Vortex lines in an imperfect Bose gas, Soviet Physics JETP13(2): 451–454.
  25. Povstenko, Y. (2009). Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Physica Scripta2009(T136): 014017.10.1088/0031-8949/2009/T136/014017
  26. Rakkiyappan, R., Cao, J. and Velmurugan, G. (2015). Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays, IEEE Transactions on Neural Networks and Learning Systems26(1): 84–97.10.1109/TNNLS.2014.2311099
  27. Raman, C., Köhl, M., Onofrio, R., Durfee, D., Kuklewicz, C., Hadzibabic, Z. and Ketterle, W. (1999). Evidence for a critical velocity in a Bose–Einstein condensed gas, Physical Review Letters83(13): 2502.10.1103/PhysRevLett.83.2502
  28. Scalas, E., Gorenflo, R. and Mainardi, F. (2000). Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and Its Applications284(1): 376–384.10.1016/S0378-4371(00)00255-7
  29. Strauss, W. and Vazquez, L. (1978). Numerical solution of a nonlinear Klein–Gordon equation, Journal of Computational Physics28(2): 271–278.10.1016/0021-9991(78)90038-4
  30. Su, N., Nelson, P.N. and Connor, S. (2015). The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests, Journal of Hydrology529(3): 1262–1273.10.1016/j.jhydrol.2015.09.033
  31. Tang, Y.-F., Vázquez, L., Zhang, F. and Pérez-García, V. (1996). Symplectic methods for the nonlinear Schrödinger equation, Computers & Mathematics with Applications32(5): 73–83.10.1016/0898-1221(96)00136-8
  32. Tarasov, V.E. (2006). Continuous limit of discrete systems with long-range interaction, Journal of Physics A: Mathematical and General39(48): 14895.10.1088/0305-4470/39/48/005
  33. Tarasov, V.E. and Zaslavsky, G.M. (2008). Conservation laws and HamiltonâĂŹs equations for systems with long-range interaction and memory, Communications in Nonlinear Science and Numerical Simulation13(9): 1860–1878.10.1016/j.cnsns.2007.05.017
  34. Tian, W., Zhou, H. and Deng, W. (2015). A class of second order difference approximations for solving space fractional diffusion equations, Mathematics of Computation84(294): 1703–1727.10.1090/S0025-5718-2015-02917-2
  35. Wang, P., Huang, C. and Zhao, L. (2016). Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, Journal of Computational and Applied Mathematics306: 231–247.10.1016/j.cam.2016.04.017
  36. Wang, T., Jiang, J. and Xue, X. (2018). Unconditional and optimal H1 error estimate of a Crank–Nicolson finite difference scheme for the Gross–Pitaevskii equation with an angular momentum rotation term, Journal of Mathematical Analysis and Applications459(2): 945–958.10.1016/j.jmaa.2017.10.073
  37. Wang, T. and Zhao, X. (2014). Optimal l error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions, Science China Mathematics57(10): 2189–2214.10.1007/s11425-014-4773-7
  38. Ye, H., Liu, F. and Anh, V. (2015). Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, Journal of Computational Physics298: 652–660.10.1016/j.jcp.2015.06.025
DOI: https://doi.org/10.2478/amcs-2019-0053 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 713 - 723
Submitted on: Jan 15, 2019
Accepted on: May 28, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ahmed S. Hendy, Jorge E. Macías-Díaz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.