Have a personal or library account? Click to login
A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space–Fractional Gross–Pitaevskii Equation Cover

A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space–Fractional Gross–Pitaevskii Equation

Open Access
|Dec 2019

Abstract

The present work departs from an extended form of the classical multi-dimensional Gross–Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross–Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system.

DOI: https://doi.org/10.2478/amcs-2019-0053 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 713 - 723
Submitted on: Jan 15, 2019
Accepted on: May 28, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ahmed S. Hendy, Jorge E. Macías-Díaz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.