Have a personal or library account? Click to login
Robust Extremum Seeking for a Second Order Uncertain Plant Using a Sliding Mode Controller Cover

Robust Extremum Seeking for a Second Order Uncertain Plant Using a Sliding Mode Controller

Open Access
|Dec 2019

References

  1. Alnejaili, T., Drid, S., Mehdi, D., Chrifi-Alaoui, L. and Sahraoui, H. (2015). Sliding mode control of a multi-source renewable power system, 3rd International Conference on Control Engineering Information Technology, Tlemcen, Algeria, pp. 1–6.10.1109/CEIT.2015.7233129
  2. Apkarian, P. and Tuan, H.D. (2000). Robust control via concave minimization local and global algorithms, Transactions on Automatic Control45(2): 299–305.10.1109/9.839953
  3. Armstrong, E.H. (1914). Operating features of the audion, Electrical World (December 12): 1149–1152.
  4. Bartoszewicz, A. and Leśniewski, P. (2014). An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links, International Journal of Applied Mathematics and Computer Science24(1): 87–97, DOI: 10.2478/amcs-2014-0007.10.2478/amcs-2014-0007
  5. Bazzi, A.M. and Krein, P.T. (2011). Concerning “Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control”, IEEE Transactions on Power Electronics26(6): 1611–1612.10.1109/TPEL.2010.2093605
  6. Belkaid, A., Colak, I. and Kayisli, K. (2016). Optimum control strategy based on an equivalent sliding mode for solar systems with battery storage, IEEE International Conference on Power Electronics and Motion Control (PEMC), Varna, Bulgaria, pp. 1262–1268.10.1109/EPEPEMC.2016.7752177
  7. Cassandras, C.G. and Lin, X. (2013). Optimal control of multi-agent persistent monitoring systems with performance constraints, in D.C. Tarraf (Ed.), Control of Cyber-Physical Systems, Lecture Notes in Control and Information Sciences, Vol. 449, Springer, Cham, pp. 281–299.10.1007/978-3-319-01159-2_15
  8. Davila, J. and Poznyak, A. (2010). Attracting ellipsoid method application to designing of sliding mode controllers, 11th International Workshop on Variable Structure Systems (VSS), Mexico City, Mexico, pp. 83–88.10.1109/VSS.2010.5544627
  9. Dimitrova, N. and Krastanov, M. (2009). Nonlinear stabilizing control of an uncertain bioprocess model, International Journal of Applied Mathematics and Computer Science19(3): 441–454, DOI: 10.2478/v10006-009-0036-0.10.2478/v10006-009-0036-0
  10. Eichfelder, G., Krüger, C. and Schöbel, A. (2017). Decision uncertainty in multiobjective optimization, Journal of Global Optimization69(2): 485–510.10.1007/s10898-017-0518-9
  11. Ghadimi, S. and Lan, G. (2012). Optimal stochastic approximation strongly convex stochastic composite optimization. I: A generic algorithmic framework, SIAM Journal on Optimization22(4): 1469–1492.10.1137/110848864
  12. Jignesh, D.J., Sripati, U. and Kulkarni, M. (2013). Performance of QPSK modulation for FSO geo-synchronous satellite communication link under atmospheric turbulence, International Conference Emerging Research Areas, Kanjirapally, India, pp. 1–5.
  13. Liu, X., Chen, X. and Kong, F. (2015). Utilization Control and Optimization of Real-Time Embedded Systems, https://ieeexplore.ieee.org/document/8187024.10.1561/9781680830637
  14. Liu, X., Hu, F. and Su, X. (2018). Sliding mode control of a class of nonlinear systems, 7th IEEE Conference on Data Driven Control and Learning Systems (DDCLS), Hubei, China, pp. 1069–1072.10.1109/DDCLS.2018.8515950
  15. Mills, G. and Krstic, M. (2015). Maximizing higher derivatives of unknown maps with extremum seeking, 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, pp. 5648–5653.10.1109/CDC.2015.7403105
  16. Montesinos-García, J.J. and Martínez-Guerra, R. (2017). A fractional exponential polynomial state observer in secure communications, 14th International Conference on Electrical Engineering, Mexico, Mexico, pp. 1–6.10.1109/ICEEE.2017.8108896
  17. Nana, S., Yugang, N. and Bei, C. (2012). Optimal integral sliding mode for uncertain discrete time systems, 31st Chinese Control Conference, Hefei, China, pp. 3155–3159.
  18. Perruquetti, W. and Barbot, J.P. (2002). Sliding Mode Control in Engineering, M. Dekker, New York, NY.10.1201/9780203910856
  19. Poznyak, A. (2018). Stochastic super-twist sliding mode controller, IEEE Transactions on Automatic Control63(5): 1538–1544.10.1109/TAC.2017.2755594
  20. qun Mei, W. (2013). Optimal control algorithm of multivariate second-order distributed parameter systems based on Fourier transform, 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, pp. 4623–4627.10.1109/CCDC.2013.6561770
  21. Raju, B.V.S.S.N. and Rao, K.D. (2009). Blind robust multiuser detection in synchronous chaotic modulation systems, Annual IEEE India Conference, Gujarat, India, pp. 1–4.10.1109/INDCON.2009.5409470
  22. Sahneh, F.D., Hu, G. and Xie, L. (2012). Extremum seeking control for systems with time-varying extremum, 31st Chinese Control Conference, Hefei, China, pp. 225–231.
  23. Sarkar, M.K., Arkdev and Singh, S.S.K. (2017). Sliding mode control: A higher order and event triggered based approach for nonlinear uncertain systems, 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), Bangkok, Thailand, pp. 208–211.10.1109/IEMECON.2017.8079590
  24. Shi, P., Xia, Y., Liu, G. and Rees, D. (2006). On designing of sliding-mode control for stochastic jump systems, IEEE Transactions on Automatic Control51(1): 97–103.10.1109/TAC.2005.861716
  25. Shtessel, Y., Edwards, C., Fridman, L. and Levant, A. (2014). Birkh¨auser Basel, Springer Science+Business Media, New York, NY.
  26. Solis, C., Clempner, J.B. and Poznyak, A.S. (2019). Extremum seeking by a dynamic plant using mixed integral sliding mode controller with stochastic synchronous detection gradient estimation, International Journal of Robust and Nonlinear Control29(3): 702–714, DOI: 10.1002/rnc.4408.10.1002/rnc.4408
  27. Solis, C.U., Clempner, J.B. and Poznyak, A.S. (2018a). Constrained extremum algorithms for with function measurements disturbed by stochastic noise, 15th International Conference on Electrical Engineering, Mexico City, Mexico, pp. 1–4.10.1109/ICEEE.2018.8533991
  28. Solis, C.U., Clempner, J.B. and Poznyak, A.S. (2018b). Continuous-time extremum seeking with function measurements disturbed by stochastic noise: A seeking synchronous detection approach, 15th International Conference Electrical Engineering, Mexico City, Mexico, pp. 1–5.10.1109/ICEEE.2018.8533980
  29. Stade, E. (2005). Fourier Analysis, Wiley-Interscience, Hoboken, NJ.10.1002/9781118165508
  30. Ulusoy, A., Liu, G., Trasser, A. and Schumacher, H. (2011). An analog synchronous QPSK demodulator for ultra-high rate wireless communications, German Microwave Conference (GeMiC), Darmstadt, Germany, pp. 1–4.10.1109/MWSYM.2011.5973210
  31. Wang, L., Chen, S. and Zhao, H. (2014). A novel fast extremum seeking scheme without steady-state oscillation, 33rd Chinese Control Conference, Nanjing, China, pp. 8687–8692.10.1109/ChiCC.2014.6896460
  32. Zhang, C. and Ordóñez, R. (2012). Extremum-seeking Control and Applications, Springer, London.10.1007/978-1-4471-2224-1
DOI: https://doi.org/10.2478/amcs-2019-0052 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 703 - 712
Submitted on: Nov 30, 2018
Accepted on: Jul 19, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Cesar Solis, Julio Clempner, Alexander Poznyak, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.