Anderson, R.J. and Spong, M.W. (1989). Bilateral control of teleoperators with time delay, IEEE Transactions on Automatic Control34(5): 494–501.10.1109/9.24201
Balachandran, R., Artigas, J., Mehmood, U. and Ryu, J. (2016). Performance comparison of wave variable transformation and time domain passivity approaches for time-delayed teleoperation: Preliminary results, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, pp. 410–417.10.1109/IROS.2016.7759087
Chen, Z., Huang, F., Song, W. and Zhu, S. (2018). A novel wave-variable based time-delay compensated four-channel control design for multilateral teleoperation system, IEEE Access6(5): 25506–25516.10.1109/ACCESS.2018.2829601
Chiaverini, S., Siciliano, B. and Villani, L. (1994). Force/position regulation of compliant robot manipulators, IEEE Transactions on Automatic Control39(3): 647–652.10.1109/9.280780
Cho, H.C. and Park, J.H. (2005). Stable bilateral teleoperation under a time delay using a robust impedance control, Mechatronics15(5): 611 – 625.10.1016/j.mechatronics.2004.05.006
Chopra, N., Spong, M.W., Hirche, S. and Buss, M. (2003). Bilateral teleoperation over the internet: The time varying delay problem, American Control Conference, Denver, CO, USA, pp. 155–160.
Chopra, N., Spong, M. W. and Lozano, R. (2008). Synchronization of bilateral teleoperators with time delay, Automatica44(8): 2142–2148.10.1016/j.automatica.2007.12.002
Chopra, N., Spong, M.W., Ortega, R. and Barabanov, N.E. (2006). On tracking performance in bilateral teleoperation, IEEE Transactions on Robotics22(4): 861–866.10.1109/TRO.2006.878942
Ehrampoosh, S., Dave, M., Kia, M.A., Rablau, C. and Zadeh, M.H. (2013). Providing haptic feedback in robot-assisted minimally invasive surgery: A direct optical force-sensing solution for haptic rendering of deformable bodies, Computer Aided Surgery18(5–6): 129–141, DOI: 10.3109/10929088.2013.839744.10.3109/10929088.2013.83974424156342
Erden, M.S. and Marić, B. (2011). Assisting manual welding with robot, Robotics and Computer-Integrated Manufacturing27(4): 818–828.10.1016/j.rcim.2011.01.003
Ganjefar, S., Rezaei, S. and Hashemzadeh, F. (2017). Position and force tracking in nonlinear teleoperation systems with sandwich linearity in actuators and time-varying delay, Mechanical Systems and Signal Processing86(1): 308–324.10.1016/j.ymssp.2016.09.023
Hogan, N. (1985). Impedance control: An approach to manipulation. Part II: Implementation, Journal of Dynamic Systems, Measurement, and Control107(1): 8–16, DOI: 10.1115/1.3140713.10.1115/1.3140713
Imaida, T., Yokokohji, Y., Doi, T., Oda, M. and Yoshikawa, T. (2004). Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition, IEEE Transactions on Robotics and Automation20(3): 499–511.10.1109/TRA.2004.825271
Ishii, T. and Katsura, S. (2012). Bilateral control with local force feedback for delay-free teleoperation, 12th IEEE International Workshop on Advanced Motion Control (AMC), Sarajevo, Bosnia and Herzegovina, pp. 1–6.10.1109/AMC.2012.6197100
Jafari, A., Rezaei, S., Ghidary, S.S., Zareinejad, M., Baghestan, K. and Dehghan, M. (2013). A stable perturbation estimator in force-reflecting passivity-based teleoperation, Transactions of the Institute of Measurement and Control35(2): 147–156, DOI: 10.1177/0142331211435849.10.1177/0142331211435849
Jordan, M.A. and Bustamante, J.L. (2007). On the presence of nonlinear oscillations in the teleoperation of underwater vehicles under the influence of sea wave and current, American Control Conference, New York City, NY, USA, pp. 894–899.10.1109/ACC.2007.4283036
Kawashima, K., Tadano, K., Sankaranarayanan, G. and Hannaford, B. (2008). Model-based passivity control for bilateral teleoperation of a surgical robot with time delay, IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 1427–1432.10.1109/IROS.2008.4650684
Lawrence, D.A. (1993). Stability and transparency in bilateral teleoperation, IEEE Transactions on Robotics and Automation9(5): 624–637.10.1109/70.258054
Lee, D. and Li, P.Y. (2005). Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators, IEEE Transactions on Robotics21(5): 936–951.10.1109/TRO.2005.852259
Lee, D. and Spong, M.W. (2006). Passive bilateral teleoperation with constant time delay, IEEE Transactions on Robotics22(2): 269–281.10.1109/TRO.2005.862037
Liu, S., Wei, X., Zheng, W. and Yang, B. (2018). A four-channel time domain passivity approach for bilateral teleoperator, IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, pp. 318–322.10.1109/ICMA.2018.8484544
Mobasser, F. and Hashtrudi-Zaad, K. (2008). Transparent rate mode bilateral teleoperation control, International Journal of Robotics Research27(1): 57–72, DOI: 10.1177/0278364907083397.10.1177/0278364907083397
Munir, S. and Book, W.J. (2002). Internet-based teleoperation using wave variables with prediction, IEEE/ASME Transactions on Mechatronics7(2): 124–133.10.1109/TMECH.2002.1011249
Munir, S. and Book, W.J. (2003). Control techniques and programming issues for time delayed internet based teleoperation, Journal of Dynamic Systems, Measurement, and Control125(2): 205–214, DOI: 10.1115/1.1568120.10.1115/1.1568120
Niemeyer, G. and Slotine, J.E. (1998). Towards force-reflecting teleoperation over the internet, IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol.3, pp. 1909–1915 vol.3.
Nohmi, M. (2003). Space teleoperation using force reflection of communication time delay, 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, Vol. 3, pp. 2809–2814.
Nuno, E. and Basanez, L. (2009). Nonlinear bilateral teleoperation: Stability analysis, IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3718–3723.10.1109/ROBOT.2009.5152490
Nuno, E., Ortega, R., Barabanov, N. and Basaez, L. (2008). A globally stable pd controller for bilateral teleoperators, IEEE Transactions on Robotics24(3): 753–758.10.1109/TRO.2008.921565
Nuno, E., Ortega, R. and Basanez, L. (2010). An adaptive controller for nonlinear teleoperators, Automatica46(1): 155–159.10.1016/j.automatica.2009.10.026
Ousaid, A.M., Haliyo, D.S., Rgnier, S. and Hayward, V. (2015). A stable and transparent microscale force feedback teleoperation system, IEEE/ASME Transactions on Mechatronics20(5): 2593–2603.10.1109/TMECH.2015.2423092
Rebelo, J. and Schiele, A. (2015). Time domain passivity controller for 4-channel time-delay bilateral teleoperation, IEEE Transactions on Haptics8(1): 79–89.10.1109/TOH.2014.236346625343769
Salcudean, S.E., Zhu, M., Zhu, W.-H. and Hashtrudi-Zaad, K. (2000). Transparent bilateral teleoperation under position and rate control, International Journal of Robotics Research19(12): 1185–1202, DOI: 10.1177/02783640022068020.10.1177/02783640022068020
Tanner, N.A. and Niemeyer, G. (2005). Improving perception in time delayed teleoperation, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 354–359.
Wen, J.T. and Murphy, S. (1991). Stability analysis of position and force control for robot arms, IEEE Transactions on Automatic Control36(3): 365–371.10.1109/9.73573
Yokokohji, Y., Imaida, T. and Yoshikawa, T. (1999). Bilateral teleoperation under time-varying communication delay, IEEE/RSJ International Conference on Intelligent Robots and Systems: Human and Environment Friendly Robots with High Intelligence and Emotional Quotients, Kyongju, South Korea, Vol. 3, pp. 1854–1859.
Yokokohji, Y. and Yoshikawa, T. (1994). Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment, IEEE Transactions on Robotics and Automation10(5): 605–620.10.1109/70.32656611539289
Zhu, M. and Salcudean, S.E. (1995). Achieving transparency for teleoperator systems under position and rate control, IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, Vol. 2, pp. 7–12.