Have a personal or library account? Click to login
Multiquery Motion Planning in Uncertain Spaces: Incremental Adaptive Randomized Roadmaps Cover

Multiquery Motion Planning in Uncertain Spaces: Incremental Adaptive Randomized Roadmaps

Open Access
|Dec 2019

References

  1. Achtelik, M.W., Weiss, S., Chli, M. and Siegwart, R. (2013). Rapidly-exploring random belief trees for motion planning under uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2013, Karlsruhe, Germany, pp. 3926–3932, DOI: 10.1109/ICRA.2013.6631130.10.1109/ICRA.2013.6631130
  2. Agha-Mohammadi, A.A. and Chakravorty, S.A.N.M. (2014). FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements, International Journal of Robotics Research33(2): 268–304, DOI: 10.1177/0278364913501564.10.1177/0278364913501564
  3. Aoude, G.S., Luders, B.D., Joseph, J.M., Roy, N. and How, J.P. (2013). Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns, Autonomous Robots35(1): 51–76, DOI: 10.1007/s10514-013-9334-3.10.1007/s10514-013-9334-3
  4. Axelrod, B., Kaelbling, L.P. and Lozano-Perez, T. (2018). Provably safe robot navigation with obstacle uncertainty, International Journal of Robotics Research37(13-14): 1760–1774, DOI: 10.1177/0278364918778338.10.1177/0278364918778338
  5. Belghith, K., Kabanza, F. and Hartman, L. (2013). Randomized path planning with preferences in highly complex dynamic environments, Robotica31(8): 1195–1208, DOI: 10.1017/S0263574713000428.10.1017/S0263574713000428
  6. Bry, A. and Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, pp. 723–730, DOI: 10.1109/ICRA.2011.5980508.10.1109/ICRA.2011.5980508
  7. Burns, B. and Brock, O. (2007). Sampling-based motion planning with sensing uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2007, Rome, Italy, pp. 3313–3318, DOI: 10.1109/ROBOT.2007.363984.10.1109/ROBOT.2007.363984
  8. Canny, J. (1988). The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA.
  9. Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E. and Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Cambridge, MA.
  10. Elbanhawi, M. and Simic, M. (2014). Sampling-based robot motion planning: A review, IEEE Access2: 56–77, DOI: 10.1109/ACCESS.2014.2302442.10.1109/ACCESS.2014.2302442
  11. González, D., Pérez, J., Milanés, V. and Nashashibi, F. (2016). A review of motion planning techniques for automated vehicles, IEEE Transactions on Intelligent Transportation Systems17(4): 1135–1145, DOI: 10.1109/TITS.2015.2498841.10.1109/TITS.2015.2498841
  12. Ha, J.S., Choi, H.L. and Jeon, J.H. (2018). Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems, International Journal of Applied Mathematics and Computer Science28(1): 155–168, DOI: 10.2478/amcs-2018-0012.10.2478/amcs-2018-0012
  13. Hsu, D., Kindel, R., Latombe, J.C. and Rock, S. (2002). Randomized kinodynamic motion planning with moving obstacles, International Journal of Robotics Research21(3): 233–255, DOI: 10.1177/027836402320556421.10.1177/027836402320556421
  14. Jafarzadeh, H. and Fleming, C.H. (2018). An exact geometry-based algorithm for path planning, International Journal of Applied Mathematics and Computer Science28(3): 493–504, DOI: 10.2478/amcs-2018-0038.10.2478/amcs-2018-0038
  15. Jaillet, L., Hoffman, J., Van den Berg, J., Abbeel, P., Porta, J.M. and Goldberg, K. (2011). EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA, pp. 2646–2652, DOI: 10.1109/IROS.2011.6094802.10.1109/IROS.2011.6094802
  16. Jaillet, L. and Simeon, T. (2004). A PRM-based motion planner for dynamically changing environments, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, Sendai, Japan, pp. 1606–1611, DOI: 10.1109/IROS.2004.1389625.10.1109/IROS.2004.1389625
  17. Jaillet, L. and Siméon, T. (2008). Path deformation roadmaps: Compact graphs with useful cycles for motion planning, The International Journal of Robotics Research27(11).10.1177/0278364908098411
  18. Janson, L., Ichter, B. and Pavone, M. (2018). Deterministic sampling-based motion planning: Optimality, complexity, and performance, International Journal of Robotics Research37(1): 46–61, DOI: 10.1177/0278364917714338.10.1177/0278364917714338
  19. Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning, International Journal of Robotics Research30(7): 846–894, DOI: 10.1177/0278364911406761.10.1177/0278364911406761
  20. Kavraki, L.E., Svestka, P., Latombe, J.C. and Overmars, M.H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robots and Automation12(4): 566–580, DOI: 10.1109/70.508439.10.1109/70.508439
  21. Khaksar, W., Tang, S.H., Ismail, N. and Arrifin, M. (2012). A review on robot motion planning approaches, Pertanika Journal of Science & Technology20(1): 15–29.
  22. Khaksar, W., Tang, S.H., Khaksar, M. and Motlagh, O. (2013). A low dispersion probabilistic roadmaps (LD-PRM) algorithm for fast and efficient sampling-based motion planning, International Journal of Advanced Robotic Systems10(11): 1–10, DOI: 10.5772/56973.10.5772/56973
  23. Kingston, Z., Moll, M. and Kavraki, L.E. (2018). Sampling-based methods for motion planning with constraints, Annual Review of Control, Robotics, and Autonomous Systems1: 159–185, DOI: 10.1146/annurev-control-060117-105226.10.1146/annurev-control-060117-105226
  24. Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science26(2): 297–308, DOI: 10.1515/amcs-2016-0021.10.1515/amcs-2016-0021
  25. Kurniawati, H., Bandyopadhyay, T. and Patrikalakis, N.M. (2012). Global motion planning under uncertain motion, sensing, and environment map, Autonomous Robots33(3): 255–272, DOI: 10.1007/s10514-012-9307-y.10.1007/s10514-012-9307-y
  26. LaValle, S.M. and Kuffner, J.J. (2001). Randomized kinodynamic planning, The International Journal of Robotics Research25(5): 378–400, DOI: 10.1177/02783640122067453.10.1177/02783640122067453
  27. Leven, P. and Hutchinson, S. (2011). A framework for real-time path planning in changing environments, The International Journal of Robotics Research21(12): 999–1030, DOI: 10.1177/0278364902021012001.10.1177/0278364902021012001
  28. Li, D., Li, Q., Cheng, N. and Song, J. (2014). Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments, Sensors14(11): 21791–21825, DOI: 10.3390/s141121791.10.3390/s141121791427956225412217
  29. Liu, W. and Ang, M.H. (2014). Incremental sampling-based algorithm for risk-aware planning under motion uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, pp. 2051–2058, DOI: 10.1109/ICRA.2014.6907131.10.1109/ICRA.2014.6907131
  30. Luders, B.D. and How, J.P. (2014). An optimizing sampling-based motion planner with guaranteed robustness to bounded uncertainty, American Control Conference, ACC 2014, Portland, OR, USA, pp. 771–777, DOI: 10.1109/ACC.2014.6859383.10.1109/ACC.2014.6859383
  31. Luna, R., S¸ucan, I.A., Moll, M. and Kavraki, L.E. (2013). Anytime solution optimization for sampling-based motion planning, IEEE International Conference on Robotics and Automation, ICRA 2013, Karlsruhe, Germany, pp. 5068–5074, DOI: 10.1109/ICRA.2013.6631301.10.1109/ICRA.2013.6631301
  32. Otte, M. and Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning, International Journal of Robotics Research35(7): 797–822, DOI: 10.1177/0278364915594679.10.1177/0278364915594679
  33. Pilania, V. and Gupta, K. (2017). Localization aware sampling and connection strategies for incremental motion planning under uncertainty, Autonomous Robots41(1): 111–132, DOI: 10.1007/s10514-015-9536-y.10.1007/s10514-015-9536-y
  34. Pilania, V. and Gupta, K. (2018). Mobile manipulator planning under uncertainty in unknown environments under uncertainty, International Journal of Robotics Research37(2–3): 316–339, DOI: 10.1177/0278364918754677.10.1177/0278364918754677
  35. Przybylski, M. and Putz, B. (2017). D* Extra Lite: A dynamic A* with searchtree cutting and frontiergap repairing, International Journal of Applied Mathematics and Computer Science27(2): 273–290, DOI: 10.1515/amcs-2017-0020.10.1515/amcs-2017-0020
  36. Shan, T. and Englot, B. (2017). Belief roadmap search: Advances in optimal and efficient planning under uncertainty, IEEE International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, pp. 5318–5325, DOI: 10.1109/IROS.2017.8206425.10.1109/IROS.2017.8206425
  37. Summers, T. (2018). Distributionally robust sampling-based motion planning under uncertainty, IEEE International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, pp. 6518–6523, DOI: 10.1109/IROS.2018.8593893.10.1109/IROS.2018.8593893
  38. Sun, W., Patil, S. and Alterovitz, R. (2015). High-frequency replanning under uncertainty using parallel sampling-based motion planning, IEEE Transactions on Robotics31(1): 104–116, DOI: 10.1109/TRO.2014.2380273.10.1109/TRO.2014.2380273453573126279645
  39. Vasquez-Gomez, J.I., Sucar, L.E. and Murrieta-Cid, R. (2017). View/state planning for three-dimensional object reconstruction under uncertainty, Autonomous Robots41(1): 89–109, DOI: 10.1007/s10514-015-9531-3.10.1007/s10514-015-9531-3
DOI: https://doi.org/10.2478/amcs-2019-0047 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 641 - 654
Submitted on: Nov 27, 2018
Accepted on: Jul 18, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Weria Khaksar, Md Zia Uddin, Jim Torresen, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.