Have a personal or library account? Click to login
Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation Cover

Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation

Open Access
|Mar 2019

References

  1. Abbaszadeh, M. and Marquez, H.J. (2009). LMI optimization approach to robust H observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems, International Journal of Robust and Nonlinear Control19(3): 313–340.10.1002/rnc.1310
  2. Alessandri, A. (2004). Observer design for nonlinear systems by using input-to-state stability, 43rd IEEE Conference on Decision and Control, 2004. CDC, Nassau, The Bahamas, Vol. 4, pp. 3892–3897.10.1109/CDC.2004.1429345
  3. Alessandri, A., Baglietto, M. and Battistelli, G. (2004). On estimation error bounds for receding-horizon filters using quadratic boundedness, IEEE Transactions on Automatic Control49(8): 1350–1355.10.1109/TAC.2004.832652
  4. Alessandri, A., Baglietto, M. and Battistelli, G. (2006). Design of state estimators for uncertain linear systems using quadratic boundedness, Automatica42(3): 497–502.10.1016/j.automatica.2005.10.013
  5. Alessandri, A. (2013). Design of time-varying state observers for nonlinear systems by using input-to-state stability, American Control Conference (ACC), Washington, DC, USA, pp. 280–285.10.1109/ACC.2013.6579850
  6. Brockman, M.L. and Corless, M. (1995). Quadratic boundedness of nonlinear dynamical systems, 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, Vol. 1, pp. 504–509.
  7. Brockman, M.L. and Corless, M. (1998). Quadratic boundedness of nominally linear systems, International Journal of Control71(6): 1105–1117.10.1080/002071798221506
  8. Buciakowski, M., Witczak, M., Mrugalski, M. and Theilliol, D. (2017a). A quadratic boundedness approach to robust DC motor fault estimation, Control Engineering Practice66: 181–194.10.1016/j.conengprac.2017.06.014
  9. Buciakowski, M., Witczak, M., Puig, V., Rotondo, D., Nejjari, F. and Korbicz, J. (2017b). A bounded-error approach to simultaneous state and actuator fault estimation for a class of nonlinear systems, Journal of Process Control52: 14–25.10.1016/j.jprocont.2017.01.002
  10. Busawon, K.K. and Kabore, P. (2001). Disturbance attenuation using proportional integral observers, International Journal of Control74(6): 618–627.10.1080/00207170010025249
  11. Chadli, M. and Karimi, H.R. (2013). Robust observer design for unknown inputs Takagi–Sugeno models, IEEE Transactions on Fuzzy Systems21(1): 158–164.10.1109/TFUZZ.2012.2197215
  12. Chen, W.-H., Ballance, D.J., Gawthrop, P.J. and O’Reilly, J. (2000). A nonlinear disturbance observer for robotic manipulators, IEEE Transactions on Industrial Electronics47(4): 932–938.10.1109/41.857974
  13. Chen, W.-H., Yang, J., Guo, L. and Li, S. (2016). Disturbance-observer-based control and related methods—an overview, IEEE Transactions on Industrial Electronics63(2): 1083–1095.10.1109/TIE.2015.2478397
  14. Chibani, A., Chadli, M., Shi, P. and Braiek, N.B. (2017). Fuzzy fault detection filter design for T–S fuzzy systems in the finite-frequency domain, IEEE Transactions on Fuzzy Systems25(5): 1051–1061.10.1109/TFUZZ.2016.2593921
  15. Ding, B. (2009). Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form, Automatica45(9): 2093–2098.10.1016/j.automatica.2009.05.017
  16. Ding, B. (2013). New formulation of dynamic output feedback robust model predictive control with guaranteed quadratic boundedness, Asian Journal of Control15(1): 302–309.10.1002/asjc.496
  17. Ding, B. and Pan, H. (2016). Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance, International Journal of Control89(8): 1554–1571.10.1080/00207179.2016.1138144
  18. Godbole, A.A., Kolhe, J.P. and Talole, S.E. (2013). Performance analysis of generalized extended state observer in tackling sinusoidal disturbances, IEEE Transactions on Control Systems Technology21(6): 2212–2223.10.1109/TCST.2012.2231512
  19. Grip, H.F., Saberi, A. and Johansen, T.A. (2012). Observers for interconnected nonlinear and linear systems, Automatica48(7): 1339–1346.10.1016/j.automatica.2012.04.008
  20. Hartman, D., Landis, K., Mehrer, M., Moreno, S. and Kim, J. (2014). Quadcopter dynamic modeling and simulation (Quad-Sim), https://github.com/dch33/Quad-Sim.
  21. Hassani, H., Zarei, J., Chadli, M. and Qiu, J. (2017). Unknown input observer design for interval type-2 T–S fuzzy systems with immeasurable premise variables, IEEE Transactions on Cybernetics47(9): 2639–2650.10.1109/TCYB.2016.260230028113389
  22. Johnson, C. (1971). Accommodation of external disturbances in linear regulator and servomechanism problems, IEEE Transactions on Automatic Control16(6): 635–644.10.1109/TAC.1971.1099830
  23. Kelly, J. and Sukhatme, G. S. (2011). Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration, The International Journal of Robotics Research30(1): 56–79.10.1177/0278364910382802
  24. Kim, K.-S., Rew, K.-H. and Kim, S. (2010). Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control55(8): 1905–1911.10.1109/TAC.2010.2049522
  25. Koenig, D. (2005). Unknown input proportional multiple-integral observer design for linear descriptor systems: Application to state and fault estimation, IEEE Transactions on Automatic Control50(2): 212–217.10.1109/TAC.2004.841889
  26. Kwon, S. and Chung, W. K. (2003). A discrete-time design and analysis of perturbation observer for motion control applications, IEEE Transactions on Control Systems Technology11(3): 399–407.10.1109/TCST.2003.810398
  27. Li, S., Yang, J., Chen, W.-H. and Chen, X. (2012). Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Transactions on Industrial Electronics59(12): 4792–4802.10.1109/TIE.2011.2182011
  28. Lynen, S., Achtelik, M. W., Weiss, S., Chli, M. and Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to MAV navigation, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 3923–3929.10.1109/IROS.2013.6696917
  29. Ping, X. (2017). Output feedback robust MPC based on off-line observer for LPV systems via quadratic boundedness, Asian Journal of Control19(4): 1641–1653.10.1002/asjc.1469
  30. Ping, X., Wang, P. and Li, Z. (2017). Quadratic boundedness of LPV systems via saturated dynamic output feedback controller, Optimal Control Applications and Methods38(6): 1239–1248.10.1002/oca.2328
  31. Miettinen, K. (1999). Nonlinear Multiobjective Optimization, International Series in Operations Research and Management Science, Vol. 12, Springer, New York, NY.10.1007/978-1-4615-5563-6
  32. Ros, L., Sabater, A. and Thomas, F. (2002). An ellipsoidal calculus based on propagation and fusion, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics32(4): 430–442.10.1109/TSMCB.2002.1018763
  33. Rotondo, D., Witczak, M., Puig, V., Nejjari, F. and Pazera, M. (2016). Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems, International Journal of Systems Science47(14): 3409–3424.10.1080/00207721.2016.1165898
  34. Ruggiero, F., Cacace, J., Sadeghian, H. and Lippiello, V. (2014). Impedance control of VToL UAVs with a momentum-based external generalized forces estimator, IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 2093–2099.10.1109/ICRA.2014.6907146
  35. Ruggiero, F., Cacace, J., Sadeghian, H. and Lippiello, V. (2015). Passivity-based control of VToL UAVs with a momentum-based estimator of external wrench and unmodeled dynamics, Robotics and Autonomous Systems72: 139–151.10.1016/j.robot.2015.05.006
  36. Santamaria-Navarro, A., Sola, J. and Andrade-Cetto, J. (2015). High-frequency MAV state estimation using low-cost inertial and optical flow measurement units, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1864–1871.10.1109/IROS.2015.7353621
  37. She, J.-H., Fang, M., Ohyama, Y., Hashimoto, H. and Wu, M. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Transactions on Industrial Electronics55(1): 380–389.10.1109/TIE.2007.905976
  38. Su, J., Chen, W.-H. and Li, B. (2015). High order disturbance observer design for linear and nonlinear systems, IEEE International Conference on Information and Automation, Lijiang, China, pp. 1893–1898.10.1109/ICInfA.2015.7279597
  39. Wang, Z., Huang, B. and Unbehauen, H. (1999). Robust h observer design of linear state delayed systems with parametric uncertainty: The discrete-time case, Automatica35(6): 1161–1167.10.1016/S0005-1098(99)00008-4
  40. Witczak, M., Buciakowski, M. and Aubrun, C. (2016). Predictive actuator fault-tolerant control under ellipsoidal bounding, International Journal of Adaptive Control and Signal Processing30(2): 375–392.10.1002/acs.2567
  41. Witczak, M., Rotondo, D., Puig, V., Nejjari, F. and Pazera, M. (2017). Fault estimation of wind turbines using combined adaptive and parameter estimation schemes, International Journal of Adaptive Control and Signal Processing32(4): 549–567.10.1002/acs.2792
  42. Yüksel, B., Secchi, C., Bülthoff, H.H. and Franchi, A. (2014). A nonlinear force observer for quadrotors and application to physical interactive tasks, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besacon, France, pp. 433–440.10.1109/AIM.2014.6878116
  43. Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems & Control Letters9(2): 149–156.10.1016/0167-6911(87)90021-1
  44. Zhang, L., Liu, X. and Kong, X. (2012a). State estimators for uncertain linear systems with different disturbance/noise using quadratic boundedness, Journal of Applied Mathematics2012, Article ID: 101353.10.1155/2012/101353
  45. Zhang, W., Su, H., Wang, H. and Han, Z. (2012b). Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations, Communications in Nonlinear Science and Numerical Simulation17(12): 4968–4977.10.1016/j.cnsns.2012.05.027
  46. Zou, T. and Li, S. (2011). Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi–Sugeno’s form, Journal of the Franklin Institute348(10): 2849–2862.10.1016/j.jfranklin.2011.09.007
DOI: https://doi.org/10.2478/amcs-2019-0008 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 99 - 109
Submitted on: Dec 15, 2017
Accepted on: Dec 16, 2018
Published on: Mar 29, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Julián Cayero, Damiano Rotondo, Bernardo Morcego, Vicenç Puig, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.