Have a personal or library account? Click to login
Hardware Reduction for Lut–Based Mealy FSMs Cover

References

  1. ABC System (2018). https://people.eecs.berkeley.edu/~alanmi/abc/.
  2. Altera (2018). Cyclone IV Device Handbook, http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf.
  3. Baranov, S. (1994). Logic Synthesis of Control Automata, Kluwer, Boston, MA.10.1007/978-1-4615-2692-6
  4. Baranov, S. (2008). Logic and System Design of Digital Systems, TUT Press, Tallinn.
  5. Barkalov, A.A. and Barkalov, Jr., A.A. (2005). Design of Mealy finite-state machines with the transformation of object codes, International Journal of Applied Mathematics and Computer Science 15(1): 151-158.
  6. Barkalov, A. and Titarenko, L. (2009). Logic Synthesis for FSMbased Control Units, Springer, Berlin.10.1007/978-3-642-04309-3
  7. Barkalov, A., Titarenko, L. and Barkalov Jr., A. (2012). Structural decomposition as a tool for the optimization of an FPGA-based implementation of a Mealy FSM, Cybernetics and Systems Analysis 48(2): 313-322.10.1007/s10559-012-9410-2
  8. Barkalov, A., Titarenko, L., Kołopie´nczyk, M., Mielcarek, K. and Bazydło, G. (2015). Logic Synthesis for FPGA-Based Finite State Machines, Springer, Cham.10.1007/978-3-319-24202-6
  9. Cong, J. and Yan, K. (2000). Synthesis for FPGAs with embedded memory blocks, Proceedings of the 2000 ACM/SIGDA 8th International Symposium on FPGAs, New York, NY, USA, pp. 75-82.10.1145/329166.329183
  10. Czerwiński, R. and Kania, D. (2013). Finite State Machine Logic Synthesis for Complex Programmable Logic Devices, Springer, Berlin.10.1007/978-3-642-36166-1
  11. DEMAIN (2018). http://zpt2.tele.pw.edu.pl/Files/demain/demain.htm.
  12. Gajski, D.D., Abdi, S., Gerstlauer, A. and Schirner, G. (2009). Embedded System Design: Modeling, Synthesis and Verification, Springer, Berlin/Heidelberg.10.1007/978-1-4419-0504-8
  13. Garcia-Vargas, I. and Senhadji-Navarro, R. (2015). Finite state machines with input multiplexing: A performance study, IEEE Transactions a Computer-Aided Design of Integrated Circuits and Systems 34(5): 867-871.10.1109/TCAD.2015.2406859
  14. Garcia-Vargas, I., Senhadji-Navarro, R., Jiménez-Moreno, G., Civit-Balcells, A. and Guerra-Gutierrez, P. (2007). ROM-based finite state machine implementation in low cost FPGAs, Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2007, Toronto, Canada, pp. 2342-2347.10.1109/ISIE.2007.4374972
  15. Grout, I. (2008). Digital Systems Design with FPGAs and CPLDs, Elsevier, Oxford.
  16. Kam, T., Villa, T., Brayton, R. and Sangiovanni-Vincentelli, A. (1997). A Synthesis of Finite State Machines: Functional Optimization, Springer, Boston, MA.10.1007/978-1-4757-2622-0
  17. Kołopieńczyk, M., Titarenko, L. and Barkalov, A. (2017). Design of EMB-based Moore FSMs, Journal of Circuits, Systems, and Computers 26(7): 1-23.10.1142/S0218126617501250
  18. Kubica, M. and Kania, D. (2017). Area-oriented technology mapping for LUT-based logic blocks, International Journal of Applied Mathematics and Computer Science 27(1): 207-222, DOI: 10.1515/amcs-2017-0015.10.1515/amcs-2017-0015
  19. LGSynth93 (1993). Benchmarks test, http://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.ta.
  20. Lin, B. and Newton, A. (1989). Synthesis of multiple level logic from symbolic high-level description languages, Proceedings of the International Conference on VLSI, Taipei, Taiwan, pp. 187-196.
  21. Maxfield, C. (2004). The Design Warrior’s Guide to FPGAs, Academic Press, Orlando, FL.
  22. Micheli, G.D. (1994). Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York, NY.
  23. Minns, P. and Elliot, I. (2008). FSM-Based Digital Design Using Verilog HDL, Wiley, Hoboken, NJ.10.1002/9780470987629
  24. Nowicka, M., Łuba, T. and Rawski, M. (1999). FPGA-based decomposition of Boolean functions: Algorithms and implementation, Proceedings of the 6th International Conference on Advanced Computer Systems, Szczecin, Poland, pp. 502-509.
  25. PKmin (2018). http://pkmin.za.pl/.
  26. Rawski, M., Selvaraj, H. and Łuba, T. (2005a). An application of functional decomposition in ROM-based FSM implementation in FPGA devices, Journal of System Architecture 51(6-7): 423-434.10.1016/j.sysarc.2004.07.004
  27. Rawski, M., Selvaraj, H., Luba, T. and Szotkowski, P. (2005b). Application of symbolic functional decomposition concept in FSM implementation targeting FPGA devices, Proceedings of the 6th International Conference on Computational Intelligence and Multimedia Applications (ICCIMA’05), Las Vegas, NV, USA, pp. 153-158.
  28. Rawski, M., Tomaszewicz, P., Borowski, G. and Łuba, T. (2011). Logic synthesis method of digital circuits designed for implementation with embedded memory blocks on FPGAs, in M. Adamski et al. (Eds.), Design of Digital Systems and Devices, Springer, Berlin, pp. 121-144.10.1007/978-3-642-17545-9_5
  29. Sajewski, Ł. (2017). Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders, International Journal of Applied and Computer Science 27(1): 33-41, DOI: 10.1515/amcs-2017-0003.10.1515/amcs-2017-0003
  30. Sasao, T. (2011). Memory-Based Logic Synthesis, Springer, New York, NY.10.1007/978-1-4419-8104-2
  31. Scholl, C. (2001). Functional Decomposition with Application to FPGA Synthesis, Kluwer, Boston, MA.10.1007/978-1-4757-3393-8
  32. Sentowich, E., Singh, K., Lavango L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., P, P.S., Bryton, R. and Sangiovanni-Vincentelli, A. (1992). SIS: A system for sequential circuit synthesis, Technical report, University of California, Berkeley, CA.
  33. Sklyarov, V. (2000). Synthesis and implementation of RAM-based finite state machines in FPGAs, Proceedings of the 10th International Conference on Field- Programmable Logic and Applications: The Roadmap to Reconfigurable Computing, Villach, Austria, pp. 718-728.10.1007/3-540-44614-1_76
  34. Sklyarov, V., Skliarova, I., Barkalov, A. and Titarenko, L. (2014). Synthesis and Optimization of FPGA-Based Systems, Springer, Berlin.10.1007/978-3-319-04708-9
  35. Sutter, G., Todorovich, E., López-Buedo, S. and Boemo, E. (2002). Low-power FSMs in FPGA: Encoding alternatives, Proceedings of the 12th International Workshop on Power and Timing Modelling Optimization and Simulation, Sevilla, Spain, pp. 363-370.10.1007/3-540-45716-X_36
  36. Tiwari, A. and Tomko, K. (2004). Saving power by mapping finite-state machines into embedded memory blocks in FPGAs, Proceedings of the Conference on Design, Automation and Test in Europe, Paris, France, pp. 916-921.
  37. Xilinx (2018). Virtex-5 Family Overview, http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf.
DOI: https://doi.org/10.2478/amcs-2018-0046 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 595 - 607
Submitted on: Oct 9, 2017
Accepted on: Apr 28, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Alexander Barkalov, Larysa Titarenko, Kamil Mielcarek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.