Have a personal or library account? Click to login
Fusion of Multiple Estimates by Covariance Intersection: Why and Howit Is Suboptimal Cover

Fusion of Multiple Estimates by Covariance Intersection: Why and Howit Is Suboptimal

By: Jiří Ajgl and  Ondřej Straka  
Open Access
|Oct 2018

References

  1. Ajgl, J. and Šimandl, M. (2014). On linear estimation fusion under unknown correlations of estimator errors, Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, pp. 2364-2369.10.3182/20140824-6-ZA-1003.00875
  2. Ajgl, J., Šimandl, M., Reinhardt, M., Noack, B. and Hanebeck, U.D. (2014). Covariance Intersection in state estimation of dynamical systems, Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain.
  3. Ajgl, J. and Straka, O. (2016a). Covariance Intersection in track-to-track fusion with memory, Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, pp. 359-364.10.1109/MFI.2016.7849514
  4. Ajgl, J. and Straka, O. (2016b). Covariance Intersection in track-to-track fusion without memory, Proceedings of the 19th International Conference on Information Fusion, Heidelberg, Germany.10.1109/MFI.2016.7849514
  5. Ajgl, J. and Straka, O. (2017). A geometrical perspective on fusion under unknown correlations based on Minkowski sums, Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, pp. 725-732.10.23919/ICIF.2017.8009722
  6. Arambel, P.O., Rago, C. and Mehra, R.K. (2001). Covariance intersection algorithm for distributed spacecraft state estimation, Proceedings of the American Control Conference, Arlington, VA, USA, pp. 4398-4403.10.1109/ACC.2001.945670
  7. Bar-Shalom, Y., Li, X.-R. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation, Wiley, Hoboken, NJ.10.1002/0471221279
  8. Bar-Shalom, Y., Willet, P.K. and Tian, X. (2011). Tracking and Data Fusion: A Handbook of Algorithms, YBS Publishing, Storrs, CT.
  9. Chen, L., Arambel, P.O. and Mehra, R.K. (2002). Fusion under unknown correlation-covariance intersection as a special case, Proceedings of the 5th International Conference on Information Fusion, Annapolis, MD, USA, pp. 905-912.
  10. Deng, Z., Zhang, P., Qi, W., Liu, J. and Gao, Y. (2012). Sequential covariance intersection fusion Kalman filter, Information Sciences 189: 293-309.10.1016/j.ins.2011.11.038
  11. Gao, Y., Li, X.R. and Song, E. (2016). Robust linear estimation fusion with allowable unknown cross-covariance, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(9): 1314-1325.10.1109/TSMC.2015.2487882
  12. Hanebeck, U.D., Briechle, K. and Horn, J. (2001). A tight bound for the joint covariance of two random vectors with unknown but constrained cross-correlation, Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, pp. 147-152.
  13. Hu, J., Xie, L. and Zhang, C. (2012). Diffusion Kalman filtering based on covariance intersection, IEEE Transactions on Signal Processing 60(2): 891-902.10.1109/TSP.2011.2175386
  14. Julier, S.J. and Uhlmann, J.K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations, Proceedings of the American Control Conference, Albuquerque, NM, USA, pp. 2369-2373.10.1109/ACC.1997.609105
  15. Julier, S.J. and Uhlmann, J.K. (2001). General decentralized data fusion with covariance intersection, in D.L. Hall and J. Llinas (Eds.), Handbook of Multisensor Data Fusion, CRC Press, Boca Raton, FL.10.1201/9781420038545.ch12
  16. Kowalczuk, Z. and Dom˙zalski, M. (2013). Asynchronous distributed state estimation for continuous-time stochastic processes, International Journal of Applied Mathematics and Computer Science 23(2): 327-339, DOI: 10.2478/amcs-2013-0025.10.2478/amcs-2013-0025
  17. Kurzhanski, A.B. and V´alyi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Birkh¨auser, Boston, MA.10.1007/978-1-4612-0277-6
  18. Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2nd Edn., Springer, Berlin/Heidelberg.
  19. Li, X.-R., Zhu, Y., Wang, J. and Han, C. (2003). Optimal linear estimation fusion-Part I: Unified fusion rules, IEEE Transactions on Information Theory 49(9): 2192-2208.10.1109/TIT.2003.815774
  20. Reinhardt, M., Noack, B., Arambel, P.O. and Hanebeck, U.D. (2015). Minimum covariance bounds for the fusion under unknown correlations, IEEE Signal Processing Letters 22(9): 1210-1214.10.1109/LSP.2015.2390417
  21. Seeger, A. (1993). Calculus rules for combinations of ellipsoids and applications, Bulletin of the Australian Mathematical Society 47(1): 1-12.10.1017/S0004972700012211
  22. Simon, D. (2006). Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches, Wiley, Hoboken, NJ.10.1002/0470045345
  23. Uhlmann, J.K. (2003). Covariance consistency methods for fault-tolerant distributed data fusion, Information Fusion 4(3): 201-215.10.1016/S1566-2535(03)00036-8
  24. Wu, Z., Cai, Q. and Fu, M. (2018). Covariance intersection for partially correlated random vectors, IEEE Transactions on Automatic Control 63(3): 619-629.10.1109/TAC.2017.2718243
DOI: https://doi.org/10.2478/amcs-2018-0040 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 521 - 530
Submitted on: Aug 16, 2017
Accepted on: Apr 27, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Jiří Ajgl, Ondřej Straka, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.