Have a personal or library account? Click to login
An Exact Geometry–Based Algorithm for Path Planning Cover
Open Access
|Oct 2018

References

  1. Akbaripour, H. and Masehian, E. (2017). Semi-lazy probabilistic roadmap: A parameter-tuned, resilient and robust path planning method for manipulator robots, International Journal of Advanced Manufacturing Technology 89(5-8): 1401-1430.10.1007/s00170-016-9074-6
  2. Asano, T., Asano, T., Guibas, L., Hershberger, J. and Imai, H. (1986). Visibility of disjoint polygons, Algorithmica 1(1): 49-63.10.1007/BF01840436
  3. Bohlin, R. and Kavraki, L.E. (2000). Path planning using lazy PRM, Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’00, San Francisco, CA, USA, Vol. 1, pp. 521-528.10.1109/ROBOT.2000.844107
  4. Choset, H.M. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT Press, Cambridge, MA.
  5. Coello, C.A.C., Pulido, G.T. and Lechuga, M.S. (2004). Handling multiple objectives with particle swarm optimization, IEEE Transactions on Evolutionary Computation 8(3): 256-279.10.1109/TEVC.2004.826067
  6. Coello, C.C., Lamont, G.B. and Van Veldhuizen, D.A. (2007). Evolutionary Algorithms for Solving Multi- Objective Problems, Springer, New York, NY.
  7. Cormen, T.H. (2001). Introduction to Algorithms, MIT Press, Cambridge, MA, pp. 595-601.
  8. Davoodi,M., Panahi, F., Mohades, A. and Hashemi, S.N. (2015). Clear and smooth path planning, Applied Soft Computing 32: 568-579.10.1016/j.asoc.2015.04.017
  9. De Berg, M., Cheong, O., Van Kreveld, M. and Overmars, M. (2008). Computational Geometry: Algorithms and Applications, Springer-Verlag TELOS, Santa Clara, CA.10.1007/978-3-540-77974-2
  10. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, NY.
  11. Edelsbrunner, H., Guibas, L.J. and Stolfi, J. (1986). Optimal point location in a monotone subdivision, SIAM Journal on Computing 15(2): 317-340.10.1137/0215023
  12. Ge, S.S. and Cui, Y.J. (2000). New potential functions for mobile robot path planning, IEEE Transactions on Robotics and Automation 16(5): 615-620.10.1109/70.880813
  13. Ghosh, S.K. and Mount, D.M. (1991). An output-sensitive algorithm for computing visibility graphs, SIAM Journal on Computing 20(5): 888-910.10.1137/0220055
  14. Jafarzadeh, H., Gholami, S. and Bashirzadeh, R. (2014). A new effective algorithm for on-line robot motion planning, Decision Science Letters 3(1): 121-130.10.5267/j.dsl.2013.07.004
  15. Jafarzadeh, H., Moradinasab, N. and Elyasi, M. (2017). An enhanced genetic algorithm for the generalized traveling salesman problem, Engineering, Technology & Applied Science Research 7(6): 2260-2265.10.48084/etasr.1570
  16. Kala, R. (2014a). Code for robot path planning using probabilistic roadmap, Indian Institute of Information Technology, Allahabad, http://rkala.in/codes.php.
  17. Kala, R. (2014b). Code for robot path planning using rapidly-exploring random trees, Indian Institute of Information Technology, Allahabad, http://rkala.in/codes.php.
  18. Kavraki, L.E., Kolountzakis, M.N. and Latombe, J.-C. (1998). Analysis of probabilistic roadmaps for path planning, IEEE Transactions on Robotics and Automation 14(1): 166-171.10.1109/70.660866
  19. Klaučo, M., Blaˇzek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science 26(2): 297-308, DOI: 10.1515/amcs-2016-0021.10.1515/amcs-2016-0021
  20. Latombe, J.-C. (2012). Robot Motion Planning, Springer, New York, NY.
  21. LaValle, S.M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning, Iowa State University, Ames, IA.
  22. Liu, J., Yang, J., Liu, H., Tian, X. and Gao, M. (2017). An improved ant colony algorithm for robot path planning, Soft Computing 21(19): 5829-5839.10.1007/s00500-016-2161-7
  23. Lozano-Pérez, T. and Wesley, M.A. (1979). An algorithm for planning collision-free paths among polyhedral obstacles, Communications of the ACM 22(10): 560-570.10.1145/359156.359164
  24. Mac, T.T., Copot, C., Tran, D.T. and De Keyser, R. (2016). Heuristic approaches in robot path planning: A survey, Robotics and Autonomous Systems 86: 13-28.10.1016/j.robot.2016.08.001
  25. Masehian, E. and Sedighizadeh, D. (2007). Classic and heuristic approaches in robot motion planning-a chronological review, World Academy of Science, Engineering and Technology 23(5): 101-106.
  26. Mohanta, J.C., Parhi, D.R. and Patel, S.K. (2011). Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation, Computers & Electrical Engineering 37(6): 1058-1070.10.1016/j.compeleceng.2011.07.007
  27. Ni, J., Wu, L., Shi, P. and Yang, S. X. (2017). A dynamic bioinspired neural network based real-time path planning method for autonomous underwater vehicles, Computational Intelligence and Neuroscience 2017, Article ID: 9269742.10.1155/2017/9269742
  28. Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.-O. and David, R.-C. (2013). Hybrid PSO-GSA robot path planning algorithm in static environments with danger zones, Proceedings of the 17th International Conference System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 434-439.10.1109/ICSTCC.2013.6688997
  29. Qureshi, A.H. and Ayaz, Y. (2015). Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments, Robotics and Autonomous Systems 68(6): 1-11.10.1016/j.robot.2015.02.007
  30. Rohnert, H. (1986). Shortest paths in the plane with convex polygonal obstacles, Information Processing Letters 23(2): 71-76.10.1016/0020-0190(86)90045-1
  31. Suzuki, Y., Thompson, S. and Kagami, S. (2009). Smooth path planning with pedestrian avoidance for wheeled robots: Implementation and evaluation, 4th International Conference on Autonomous Robots and Agents, ICARA 2009, Wellington, New Zealand, pp. 657-662.10.1109/ICARA.2000.4803910
  32. Tang, S., Khaksar, W., Ismail, N. and Ariffin, M. (2012). A review on robot motion planning approaches, Pertanika Journal of Science and Technology 20(1): 15-29.
  33. Urmson, C. and Simmons, R. (2003). Approaches for heuristically biasing RRT growth, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, Vol. 2, pp. 1178-1183.
  34. Welzl, E. (1985). Constructing the visibility graph for n-line segments in O(n2) time, Information Processing Letters 20(4): 167-171.10.1016/0020-0190(85)90044-4
  35. Zhang, Y., Gong, D.-W. and Zhang, J.-H. (2013). Robot path planning in uncertain environment using multi-objective particle swarm optimization, Neurocomputing 103: 172-185.10.1016/j.neucom.2012.09.019
  36. Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm, Working paper, ETH Z¨urich, Z¨urich.
DOI: https://doi.org/10.2478/amcs-2018-0038 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 493 - 504
Submitted on: Jul 12, 2017
Accepted on: Apr 9, 2018
Published on: Oct 3, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Hassan Jafarzadeh, Cody H. Fleming, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.