Have a personal or library account? Click to login
Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems Cover

Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems

Open Access
|Mar 2018

References

  1. Arslan, O. and Tsiotras, P. (2013). Use of relaxation methods in sampling-based algorithms for optimal motion planning, IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 2421-2428.10.1109/ICRA.2013.6630906
  2. García-Rodríguez, R., Segovia-Palacios, V., Parra-Vega, V. and Villalva-Lucio, M. (2016). Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips, International Journal of Applied Mathematics and Computer Science 26(2): 309-323, DOI: 10.1515/amcs-2016-0022.10.1515/amcs-2016-0022
  3. Glassman, E. and Tedrake, R. (2010). A quadratic regulator-based heuristic for rapidly exploring state space, IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 5021-5028.10.1109/ROBOT.2010.5509718
  4. Goretkin, G., Perez, A., Platt, R. and Konidaris, G. (2013). Optimal sampling-based planning for linear-quadratic kinodynamic systems, IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 2429-2436.10.1109/ICRA.2013.6630907
  5. Ha, J.-S., Lee, J.-J. and Choi, H.-L. (2013). A successive approximation-based approach for optimal kinodynamic motion planning with nonlinear differential constraints, IEEE Conference on Decision and Control, Florence, Italy, pp. 3623-3628.
  6. Huynh, V.A., Karaman, S. and Frazzoli, E. (2012). An incremental sampling-based algorithm for stochastic optimal control, IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, pp. 2865-2872.10.1109/ICRA.2012.6225158
  7. Huynh, V.A., Kogan, L. and Frazzoli, E. (2014). A Martingale approach and time-consistent sampling-based algorithms for risk management in stochastic optimal control, IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 1858-1865.10.1109/CDC.2014.7039669
  8. Janson, L., Schmerling, E., Clark, A. and Pavone, M. (2015). Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions, The International Journal of Robotics Research 34(7): 883-921.10.1177/0278364915577958479802327003958
  9. Jeon, J., Karaman, S. and Frazzoli, E. (2011). Anytime computation of time-optimal off-road vehicle maneuvers using the RRT*, IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 3276-3282.10.1109/CDC.2011.6161521
  10. Jeon, J., Karaman, S. and Frazzoli, E. (2015). Optimal sampling-based feedback motion trees among obstacles for controllable linear systems with linear constraints, IEEE International Conference on Robotics and Automation, Seattle, WA, USA, pp. 4195-4201.10.1109/ICRA.2015.7139777
  11. Karaman, S. and Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods, IEEE Conference on Decision and Control, Atlanta, GA, USA, pp. 7681-7687.10.1109/CDC.2010.5717430
  12. Karaman, S. and Frazzoli, E. (2011a). Incremental sampling-based algorithms for a class of pursuit-evasion games, in D. Hsu et al. (Eds.), Algorithmic Foundations of Robotics IX, Springer, Berlin/Heidelberg, pp. 71-87.10.1007/978-3-642-17452-0_5
  13. Karaman, S. and Frazzoli, E. (2011b). Sampling-based algorithms for optimal motion planning, International Journal of Robotics Research 30(7): 846-894.10.1177/0278364911406761
  14. Karaman, S. and Frazzoli, E. (2013). Sampling-based optimal motion planning for non-holonomic dynamical systems, IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 5041-5047.10.1109/ICRA.2013.6631297
  15. Karaman, S., Walter, M.R., Perez, A., Frazzoli, E. and Teller, S. (2011). Anytime motion planning using the RRT*, IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 1478-1483.10.1109/ICRA.2011.5980479
  16. Kirk, D.E. (2012). Optimal Control Theory: An Introduction, Courier Corporation, Dover Publications, Inc. Mineola, NY.
  17. Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle ystems, International Journal of Applied Mathematics and Computer Science 26(2): 297-308, DOI: 10.1515/amcs-2016-0021.10.1515/amcs-2016-0021
  18. LaValle, S.M. (1998). Rapidly-exploring random trees: A new tool for path planning, Technical Report 98-11, Iowa State University, Ames, IO.
  19. LaValle, S.M. (2011). Motion planning, IEEE Robotics & Automation Magazine 18(1): 79-89.10.1109/MRA.2011.940276
  20. Lewis, F.L., Vrabie, D. and Syrmos, V.L. (1995). Optimal Control, John Wiley & Sons, New York, NY.
  21. Pepy, R., Kieffer, M. and Walter, E. (2009). Reliable robust path planning with application to mobile robots, International Journal of Applied Mathematics and Computer Science 19(3): 413-424, DOI: 10.2478/v10006-009-0034-2.10.2478/v10006-009-0034-2
  22. Perez, A., Platt, R., Konidaris, G., Kaelbling, L. and Lozano-Perez, T. (2012). LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics, IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, pp. 2537-2542.10.1109/ICRA.2012.6225177
  23. Rodríguez-Liñán, M.C., Mendoza, M., Bonilla, I. and Chávez-Olivares, C.A. (2017). Saturating stiffness control of robot manipulators with bounded inputs, International Journal of Applied Mathematics and Computer Science 27(1): 79-90, DOI: 10.1515/amcs-2017-0006.10.1515/amcs-2017-0006
  24. Szynkiewicz, W. and Błaszczyk, J. (2011). Optimization-based approach to path planning for closed chain robot systems, International Journal of Applied Mathematics and Computer Science 21(4): 659-670, DOI: 10.2478/v10006-011-0052-8.10.2478/v10006-011-0052-8
  25. Tang, G. (2005). Suboptimal control for nonlinear systems: A successive approximation approach, Systems & Control Letters 54(5): 429-434.10.1016/j.sysconle.2004.09.012
  26. Tedrake, R. (2009). Underactuated robotics: Learning, planning, and control for efficient and agile machines, Course Notes for MIT 6.832, MIT, Cambridge, MA, http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-spring-2009/.
  27. Webb, D.J. and van den Berg, J. (2013). Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics, 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 5054-5061.10.1109/ICRA.2013.6631299
DOI: https://doi.org/10.2478/amcs-2018-0012 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 155 - 168
Submitted on: Jan 9, 2017
Accepted on: Sep 1, 2017
Published on: Mar 31, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Jung-Su Ha, Han-Lim Choi, Jeong Hwan Jeon, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.