Aujol, J.-F., Aubert, G., Blanc-F´eraud, L. and Chambolle, A. (2005). Image decomposition into a bounded variation component and an oscillating component, Journal of Mathematical Imaging and Vision22(1): 71–88.10.1007/s10851-005-4783-8
Aujol, J.-F., Gilboa, G., Chan, T. and Osher, S. (2006). Structure-texture image decomposition—modeling, algorithms, and parameter selection, International Journal of Computer Vision67(1): 111–136.10.1007/s11263-006-4331-z
Aujol, J.-F. and Gilboa, G. (2006). Constrained and SNR-based solutions for TV-Hilbert space image denoising, Journal of Mathematical Imaging and Vision26(1–2): 217–237.10.1007/s10851-006-7801-6
Barcelos, C.A.Z. and Chen Y. (2000). Heat flows and related minimization problem in image restoration, Computers & Mathematics with Applications39(5–6): 81–97.10.1016/S0898-1221(00)00048-1
Chambolle, A. (2004). An algorithm for total variation minimization and application, Journal of Mathematical Imaging and Vision20(1–2): 89–97.10.1023/B:JMIV.0000011321.19549.88
Chan, T.F., Golub, G.H. and Mulet, P. (1999). A nonlinear primal-dual method for total variation-based image restoration, SIAM Journal on Scientific Computing20(6): 1964–1977.10.1137/S1064827596299767
Chan, T.F., Esedoglu, S. and Park, F.E. (2007). Image decomposition combining staircase reducing and texture extraction, Journal of Visual Communication and Image Representation18(6): 464–486.10.1016/j.jvcir.2006.12.004
Chen, Y. and Wunderli, T. (2002). Adaptive total variation for image restoration in BV space, Journal of Mathematical Analysis and Applications272(1): 117–137.10.1016/S0022-247X(02)00141-5
Daubechies, I. and Teschke, G. (2005). Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring and denoising, Applied and Computational Harmonic Analysis19(1): 1–16.10.1016/j.acha.2004.12.004
Goldstein, T. and Osher, S. (2009). The split Bregman algorithm for L1 regularized problems, SIAM Journal on Imaging Sciences2(2): 323–343.10.1137/080725891
Jia, R.-Q., Zhao, H. and Zhao, W. (2009). Convergence analysis of the Bregman method for the variational model of image denoising, Applied and Computational Harmonic Analysis27(3): 367–379.10.1016/j.acha.2009.05.002
Liu, X. and Huang, L. (2010). Split Bregman iteration algorithm for total bounded variation regularization based image deblurring, Journal of Mathematical Analysis and Applications372(2): 486–495.10.1016/j.jmaa.2010.07.013
Liu, X. and Huang, L. (2012). Total bounded variation based Poissonian images recovery by split Bregman iteration, Mathematical Methods in the Applied Sciences35(5): 520–529.10.1002/mma.1588
Liu, X. and Huang, L. (2013). Poissonian image reconstruction using alternating direction algorithm, Journal of Electronic Imaging22(3): 033007.10.1117/1.JEI.22.3.033007
Liu, X. and Huang, L. (2014). A new nonlocal total variation regularization algorithm for image denoising, Mathematics and Computers in Simulation97: 224–233.10.1016/j.matcom.2013.10.001
Ng, M.K., Yuan, X.M. and Zhang, W.X. (2013). A coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels, IEEE Transactions on Image Processing22(6): 2233–2246.10.1109/TIP.2013.224652023412618
Osher, S., Solé, A. and Vese, L. (2003). Image decomposition and restoration using total variation minimization and H-1 norm, Multiscale Modeling & Simulation1(3): 349–370.10.1137/S1540345902416247
Prasath, V.B.S. (2011). A well-posed multiscale regularization scheme for digital image denoising, International Journal of Applied Mathematics and Computer Science21(4): 769–777, DOI: 10.2478/v10006-011-0061-7.10.2478/v10006-011-0061-7
Rudin, L., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms, Physica D60(1–4): 259–268.10.1016/0167-2789(92)90242-F
Setzer, S., Steidl, G. and Teuber T. (2010). Deblurring Poissonian images by split Bregman techniques, Journal of Visual Communication and Image Representation21(3): 193–199.10.1016/j.jvcir.2009.10.006
Strong, D.M. and Chan, T.F. (1996). Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing, CAM Report 96- 46, UCLA, Los Angeles, CA.
Szlam, A., Guo, Z. and Osher S. (2010). A split Bregman method for non-negative sparsity penalized least squares with applications to hyperspectral demixing, CAM Report 10-06, UCLA, Los Angeles, CA.10.1109/ICIP.2010.5651881
Vese, L. and Osher, S. (2003). Modeling textures with total variation minimization and oscillating patterns in image processing, Journal of Scientific Computing19(1–3): 553–572.
Wang, Y., Yang, J., Yin, W. and Zhang, Y. (2007). A new alternating minimization algorithm for total variation image reconstruction, CAAM Technical Report, TR07–10, Rice University, Houston, TX.
Zhang, X., Burger, M., Bresson, X. and Osher, S. (2009). Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, CAM Report 09-03, UCLA, Los Angeles, CA.