Have a personal or library account? Click to login

A support vector machine with the tabu search algorithm for freeway incident detection

Open Access
|Jun 2014

Abstract

Automated Incident Detection (AID) is an important part of Advanced Traffic Management and Information Systems (ATMISs). An automated incident detection system can effectively provide information on an incident, which can help initiate the required measure to reduce the influence of the incident. To accurately detect incidents in expressways, a Support Vector Machine (SVM) is used in this paper. Since the selection of optimal parameters for the SVM can improve prediction accuracy, the tabu search algorithm is employed to optimize the SVM parameters. The proposed model is evaluated with data for two freeways in China. The results show that the tabu search algorithm can effectively provide better parameter values for the SVM, and SVM models outperform Artificial Neural Networks (ANNs) in freeway incident detection.

DOI: https://doi.org/10.2478/amcs-2014-0030 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 397 - 404
Submitted on: Jul 18, 2013
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Baozhen Yao, Ping Hu, Mingheng Zhang, Maoqing Jin, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.