Bawa, R.K., Lal, A.K. and Kumar, V. (2011). An ε-uniform hybrid scheme for singularly perturbed delay differential equations, Applied Mathematics and Computation217(21): 8216–8222.10.1016/j.amc.2011.02.089
Das, P. and Natesan, S. (2013). A uniformly convergent hybrid scheme for singularly perturbed system of reaction–diffusion Robin type boundary-value problems, Journal of Applied Mathematics and Computing41(1): 447–471.10.1007/s12190-012-0611-7
Farrell, P.E., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Robust Computational Techniques for Boundary Layers, Chapman & Hall/CRC Press, New York, NY.10.1201/9781482285727
Madden, N. and Stynes, M. (2003). A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems, IMA Journal of Numerical Analysis23(4): 627–644.10.1093/imanum/23.4.627
Matthews, S., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Parameter-robust numerical methods for a system of reaction–diffusion problems with boundary layers, in G.I. Shishkin, J.J.H. Miller and L. Vulkov (Eds.), Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Nova Science Publishers, New York, NY, pp. 219–224.
Matthews, S., O’Riordan, E. and Shishkin, G.I. (2002). A numerical method for a system of singularly perturbed reaction–diffusion equations, Journal of Computational and Applied Mathematics145(1): 151–166.10.1016/S0377-0427(01)00541-6
Melenk, J.M., Xenophontos, C. and Oberbroeckling, L. (2013). Analytic regularity for a singularly perturbed system of reaction–diffusion equations with multiple scales, Advances in Computational Mathematics39(2): 367–394.10.1007/s10444-012-9284-x
Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (1996). Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore.10.1142/2933
Natesan, S. and Briti, S.D. (2007). A robust computational method for singularly perturbed coupled system of reaction–diffusion boundary value problems, Applied Mathematics and Computation188(1): 353–364.10.1016/j.amc.2006.09.120
Rao, S.C.S., Kumar, S. and Kumar, M. (2011). Uniform global convergence of a hybrid scheme for singularly perturbed reaction–diffusion systems, Journal of Optimization Theory and Applications151(2): 338–352.10.1007/s10957-011-9867-6
Roos, H.-G., Stynes, M. and Tobiska, L. (1996). Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin.10.1007/978-3-662-03206-0
Shishkin, G.I. (1995). Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations, Computational Mathematics and Mathematical Physics35(4): 429–446.
Sun, G. and Stynes, M. (1995). An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction–diffusion problem, Numerische Mathematik70(4): 487–500.10.1007/s002110050130
Valanarasu, T. and Ramanujam, N. (2004). An asymptotic initial-value method for boundary value problems for a system of singularly perturbed second-order ordinary differential equations, Applied Mathematics and Computation147(1): 227–240.10.1016/S0096-3003(02)00663-X