Have a personal or library account? Click to login

A robust computational technique for a system of singularly perturbed reaction–diffusion equations

Open Access
|Jun 2014

References

  1. Bawa, R.K., Lal, A.K. and Kumar, V. (2011). An ε-uniform hybrid scheme for singularly perturbed delay differential equations, Applied Mathematics and Computation217(21): 8216–8222.10.1016/j.amc.2011.02.089
  2. Das, P. and Natesan, S. (2013). A uniformly convergent hybrid scheme for singularly perturbed system of reaction–diffusion Robin type boundary-value problems, Journal of Applied Mathematics and Computing41(1): 447–471.10.1007/s12190-012-0611-7
  3. Doolan, E.P., Miller, J.J.H. and Schilders, W.H.A. (1980). Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin.
  4. Farrell, P.E., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Robust Computational Techniques for Boundary Layers, Chapman & Hall/CRC Press, New York, NY.10.1201/9781482285727
  5. Madden, N. and Stynes, M. (2003). A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems, IMA Journal of Numerical Analysis23(4): 627–644.10.1093/imanum/23.4.627
  6. Matthews, S., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (2000). Parameter-robust numerical methods for a system of reaction–diffusion problems with boundary layers, in G.I. Shishkin, J.J.H. Miller and L. Vulkov (Eds.), Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Nova Science Publishers, New York, NY, pp. 219–224.
  7. Matthews, S., O’Riordan, E. and Shishkin, G.I. (2002). A numerical method for a system of singularly perturbed reaction–diffusion equations, Journal of Computational and Applied Mathematics145(1): 151–166.10.1016/S0377-0427(01)00541-6
  8. Melenk, J.M., Xenophontos, C. and Oberbroeckling, L. (2013). Analytic regularity for a singularly perturbed system of reaction–diffusion equations with multiple scales, Advances in Computational Mathematics39(2): 367–394.10.1007/s10444-012-9284-x
  9. Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. (1996). Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore.10.1142/2933
  10. Natesan, S. and Briti, S.D. (2007). A robust computational method for singularly perturbed coupled system of reaction–diffusion boundary value problems, Applied Mathematics and Computation188(1): 353–364.10.1016/j.amc.2006.09.120
  11. Nayfeh, A.H. (1981). Introduction to Perturbation Methods, Wiley, New York, NY.
  12. Rao, S.C.S., Kumar, S. and Kumar, M. (2011). Uniform global convergence of a hybrid scheme for singularly perturbed reaction–diffusion systems, Journal of Optimization Theory and Applications151(2): 338–352.10.1007/s10957-011-9867-6
  13. Roos, H.-G., Stynes, M. and Tobiska, L. (1996). Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin.10.1007/978-3-662-03206-0
  14. Shishkin, G.I. (1995). Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations, Computational Mathematics and Mathematical Physics35(4): 429–446.
  15. Sun, G. and Stynes, M. (1995). An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction–diffusion problem, Numerische Mathematik70(4): 487–500.10.1007/s002110050130
  16. Valanarasu, T. and Ramanujam, N. (2004). An asymptotic initial-value method for boundary value problems for a system of singularly perturbed second-order ordinary differential equations, Applied Mathematics and Computation147(1): 227–240.10.1016/S0096-3003(02)00663-X
DOI: https://doi.org/10.2478/amcs-2014-0029 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 387 - 395
Submitted on: Mar 7, 2013
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Vinod Kumar, Rajesh K. Bawa, Arvind K. Lal, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.