Have a personal or library account? Click to login

Tracking an omnidirectional evader with a differential drive robot at a bounded variable distance

Open Access
|Jun 2014

References

  1. Başar, T. and Olsder, G. (1982). Dynamic Noncooperative Game Theory, Academic Press, New York, NY.
  2. Balkcom, D. and Mason, M. (2002). Time optimal trajectories for bounded velocity differential drive vehicles, International Journal of Robotics Research21(3): 219–232.10.1177/027836402320556403
  3. Bandyopadhyay, T., Li, Y., Ang, M. and Hsu, D. (2006). A greedy strategy for tracking a locally predictable target among obstacles, Proceedings of the International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, pp. 2342–2347.
  4. Becker, C., Gonz´alez-Ba˜nos, H., Latombe, J. and Tomasi, C. (1995). An intelligent observer, Proceedings of the International Symposium on Experimental Robotics, ISER 1995, Stanford, CA, USA, pp. 153–160.
  5. Bhattacharya, S. and Hutchinson, S. (2010). On the existence of Nash equilibrium for a two player pursuit-evasion game with visibility constraints, International Journal of Robotics Research29(7): 831–839.10.1177/0278364909354628
  6. Chung, T. (2008). On probabilistic search decisions under searcher motion constraints, Proceedings of the International Workshop on the Algorithmic Foundations of Robotics, WAFR 2008, Guanajuato, Mexico, pp. 501–516.
  7. Fabiani, P., González, H., Latombe, J. and Lin, D. (2002). Tracking an unpredictable target among occluding obstacles under localization uncertainties, Robotics and Autonomous Systems38(1): 31–48.10.1016/S0921-8890(01)00170-1
  8. González, H., Lee, C. Y. and Latombe, J. C. (2002). Real-time combinatorial tracking of a target moving unpredictably among obstacles, Proceedings of the International Conference on Robotics and Automation, ICRA 2002, Washington, DC, USA, pp. 1683–1690.
  9. Guibas, L., Latombe, J., LaValle, S. M., Lin, D. and Motwani, R. (1999). A visibility-based pursuit-evasion problem, International Journal of Computational Geometry and Applications9(4–5): 471–494.10.1142/S0218195999000273
  10. Hájek, O. (1965). Pursuit Games, Academic Press, New York, NY.
  11. Hespanha, J., Prandini, M. and Sastry, S. (2000). Probabilistic pursuit-evasion games: A one-step Nash approach, Proceedings of the 39th International Conference on Decision and Control, Los Angeles, CA, USA, pp. 2272–2277.
  12. Hollinger, G., Singh, S., Djugash, J. and Kehagias, A. (2009). Efficient multi-robot search for a moving target, International Journal of Robotics Research28(2): 201–219.10.1177/0278364908099853
  13. Isaacs, R. (1965). Differential Games: A Mathematical Theory With Applications to Warfare and Pursuit, Control and Optimization, Academic Press, New York, NY.
  14. Isler, V., Kannan, S. and Khanna, S. (2005). Randomized pursuit-evasion in a polygonal environment, IEEE Transactions on Robotics21(5): 864–875.10.1109/TRO.2005.851373
  15. Jung, B. and Sukhatme, G. (2002). Tracking targets using multiple robots: The effect of environment occlusion, Autonomous Robots13(3): 191–205.10.1023/A:1020598107671
  16. Kowalczuk, Z. and Czubenko, M. (2011). Intelligent decision-making system for autonomus robots, International Journal and Applied Mathematics and Computer Science21(4): 671–684, DOI: 10.2478/v10006-011-0053-7.10.2478/v10006-011-0053-7
  17. LaValle, S.M. (2006). Planning Algorithms, Cambridge University Press, New York, NY.10.1017/CBO9780511546877
  18. LaValle, S.M., González, H., Becker, C. and Latombe, J. (1997). Motion strategies for maintaining visibility of a moving target, Proceedings of the International Conference on Robotics and Automation, ICRA 1997, Albuquerque, NM, USA, pp. 731–736.
  19. Merz, A. (1971). The Homicidal Chauffeur: A Differential Game, Ph.D. thesis, Stanford University, Stanford, CA.
  20. Murrieta-Cid, R., Monroy, R., Hutchinson, S. and Laumond, J.-P. (2008). A complexity result for the pursuit-evasion game of maintaining visibility of a moving evader, Proceedings of the International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, pp. 2657–2664.
  21. Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S. and Hutchinson, S. (2007). Surveillance strategies for a pursuer with finite sensor range, International Journal of Robotics Research26(3): 233–252.10.1177/0278364907077083
  22. Murrieta-Cid, R., Ruiz, U., Marroquin, J., Laumond, J. and Hutchinson, S. (2011). Tracking an omnidirectional evader with a differential drive robot, Autonomous Robots31(4): 345–366.10.1007/s10514-011-9246-z
  23. Murrieta-Cid, R., Tovar, B. and Hutchinson, S. (2005). A sampling-based motion planning approach to maintain visibility of unpredictable targets, Autonomous Robots19(3): 285–300.10.1007/s10514-005-4052-0
  24. O’Kane, J. (2008). On the value of ignorance: Balancing tracking and privacy using a two-bit sensor, Proceedings of the International Workshop on the Algorithmic Foundations of Robotics, WAFR 2008, Guanajuato, Mexico, pp. 235–249.
  25. Parker, L. (2002). Distributed algorithms for multi-robot observation of multiple targets, Autonomous Robots12(3): 231–255.
  26. Prodan, I., Olaru, S., Stoica, C. and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science23(1): 91–102, DOI: 10.2478/amcs-2013-0008.10.2478/amcs-2013-0008
  27. Ruiz, U. and Murrieta-Cid, R. (2012). A homicidal differential drive robot, Proceedings of the International Conference on Robotics and Automation, ICRA 2012, St. Paul, MN, USA, pp. 3218–3225.
  28. Ruiz, U., Murrieta-Cid, R. and Marroquin, J. (2013). Time-optimal motion strategies for capturing an omnidirectional evader using a differential drive robot, IEEE Transactions on Robotics29(5): 1180–1196.10.1109/TRO.2013.2264868
  29. Sachs, S., LaValle, S. and Rajko, S. (2004). Visibility-based pursuit-evasion in an unknown planar environment, International Journal of Robotics Research23(1): 3–26.10.1177/0278364904039610
  30. Schwartz, J.T. and Sharir, M. (1983). On the piano movers’ problem. I: The case of a two-dimensional rigid polygon body moving amidst polygonal barriers, Communications on Pure and Applied Mathematics36(3): 345–398.
  31. Skrzypczyk, K. (2005). Control of a team of mobile robots based on non-cooperative equilibria with partial coordination, International Journal of Applied Mathematics and Computer Science15(1): 89–97.
  32. Suzuki, I. and Yamashita, M. (1992). Searching for a mobile intruder in a polygonal region, SIAM Journal on Computing21(5): 863–888.10.1137/0221051
  33. Tekdas, O. and Yang, W.and Isler, V. (2010). Robotic routers: Algorithms and implementation, International Journal of Robotics Research29(1): 110–126.10.1177/0278364909105053
  34. Tovar, B. and LaValle, S. (2008). Visibility-based pursuit-evasion with bounded speed, International Journal of Robotics Research27(11–12): 1350–1360.10.1177/0278364908097580
  35. Vidal, R., Shakernia, O., Jin, H., Hyunchul, D. and Sastry, S. (2002). Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation, IEEE Transactions on Robotics and Automation18(5): 662–669.10.1109/TRA.2002.804040
DOI: https://doi.org/10.2478/amcs-2014-0028 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 371 - 385
Submitted on: Apr 25, 2013
Accepted on: Jan 18, 2014
Published on: Jun 26, 2014
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Ubaldo Ruiz, Jose Luis Marroquin, Rafael Murrieta-Cid, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.