Have a personal or library account? Click to login
An analytical and numerical approach to a bilateral contact problem with nonmonotone friction Cover

An analytical and numerical approach to a bilateral contact problem with nonmonotone friction

Open Access
|Jun 2013

References

  1. Alart, P., Barboteu, M. and Lebon, F. (1997). Solutions of frictional contact problems using an EBE preconditioner, Computational Mechanics 30(4): 370-379.10.1007/s004660050258
  2. Alart, P. and Curnier, A. (1991). A mixed formulation for frictional contact problems prone to Newton like solution methods, Computer Methods in Applied Mechanics andEngineering 92(3): 353-375.10.1016/0045-7825(91)90022-X
  3. Baniotopoulos, C., Haslinger, J. and Moravkova, Z. (2005). Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities, Applicationsof Mathematics 50(1): 1-25.10.1007/s10492-005-0001-7
  4. Barboteu, M., Han, W. and Sofonea, M. (2002). Numerical analysis of a bilateral frictional contact problem for linearly elastic materials, IMA Journal of Numerical Analysis22(3): 407-436.10.1093/imanum/22.3.407
  5. Barboteu, M. and Sofonea, M. (2009). Analysis and numerical approach of a piezoelectric contact problem, Annals of theAcademy of Romanian Scientists: Mathematics and Its Applications1(1): 7-31.
  6. Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, Wiley Interscience, New York, NY.
  7. Denkowski, Z., Mig´orski, S. and Papageorgiou, N.S. (2003). An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, MA/Dordrecht/London/New York, NY.10.1007/978-1-4419-9156-0
  8. Duvaut, G. and Lions, J.L. (1976). Inequalities in Mechanicsand Physics, Springer-Verlag, Berlin.10.1007/978-3-642-66165-5
  9. Franc, V. (2011). Library for quadratic programming, http://cmp.felk.cvut.cz/˜xfrancv/libqp/html.
  10. Han, W. and Sofonea, M. (2002). Quasistatic ContactProblems in Viscoelasticity and Viscoplasticity, American Mathematical Society, Providence, RI/International Press, Sommerville, MA.10.1090/amsip/030
  11. Haslinger, J., Miettinen, M. and Panagiotopoulos, P.D. (1999). Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications, Kluwer Academic Publishers, Boston, MA/Dordrecht/London.10.1007/978-1-4757-5233-5
  12. Hild, P. and Renard, Y. (2007). An error estimate for the Signorini problem with Coulomb friction approximated by finite elements, SIAM Journal of Numerical Analysis45(5): 2012-2031.10.1137/050645439
  13. Ionescu, I.R. and Nguyen, Q.L. (2002). Dynamic contact problems with slip-dependent friction in viscoelasticity, InternationalJournal of Applied Mathematics and ComputerScience 12(1): 71-80.
  14. Ionescu, I.R., Nguyen, Q.L. andWolf, S. (2003). Slip-dependent friction in dynamic elasticity, Nonlinear Analysis53(3-4): 375-390.10.1016/S0362-546X(02)00302-4
  15. Ionescu, I.R. and Paumier, J.C. (1996). On the contact problem with slip displacement dependent friction in elastostatics, International Journal of Engineering Sciences34(4): 471-491.10.1016/0020-7225(95)00109-3
  16. Ionescu, I.R. and Sofonea, M. (1993). Functional and NumericalMethods in Viscoplasticity, Oxford University Press, Oxford.
  17. Khenous, Y., Laborde, P. and Renard, Y. (2006a). On the discretization of contact problems in elastodynamics, in P. Wriggers and U. Nackenhorst (Eds.), Analysisand Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics, Vol. 27, Springer, Berlin/Heidelberg, pp. 31-38.10.1007/3-540-31761-9_4
  18. Khenous, H.B., Pommier, J. and Renard, Y. (2006b). Hybrid discretization of the Signorini problem with coulomb friction. theoretical aspects and comparison of some numerical solvers, Applied Numerical Mathematics56(2): 163-192.10.1016/j.apnum.2005.03.002
  19. Laursen, T. (2002). Computational Contact and ImpactMechanics, Springer, Berlin/Heidelberg.
  20. Mäkelä, M.M. (1990). Nonsmooth Optimization, Theory andApplications with Applications to Optimal Control, Ph.D. thesis, University of Jyv¨askyl¨a, Jyv¨askyl¨a.
  21. Mäkelä, M.M. (2001). Survey of bundle methods for nonsmooth optimization, Optimization Methods and Software17(1): 1-29.10.1080/10556780290027828
  22. Mäkelä, M.M., Miettinen, M., Lukˇsan, L. and Vlˇcek, J. (1999). Comparing nonsmooth nonconvex bundle methods in solving hemivariational inequalities, Journal of GlobalOptimization 14(2): 117-135.
  23. Miettinen, M. (1995). On contact problems with nonmonotone contact conditions and their numerical solution, in M.H. Aliabadi and C. Alessandri (Eds.), Contact Mechanics II:Computational Techniques, Transactions on Engineering Sciences, Vol. 7, WIT Press, Southampton/Boston, MA, pp. 167-174.
  24. Migórski, S. and Ochal, A. (2005). Hemivariational inequality for viscoelastic contact problem with slip-dependent friction, Nonlinear Analysis 61(1-2): 135-161.10.1016/j.na.2004.11.018
  25. Mistakidis, E.S. and Panagiotopulos, P.D. (1997). Numerical treatment of problems involving nonmonotone boundary or stress-strain laws, Computers & Structures64(1-4): 553-565.10.1016/S0045-7949(96)00131-9
  26. Mistakidis, E.S. and Panagiotopulos, P.D. (1998). The search for substationary points in the unilateral contact problems with nonmonotone friction, Mathematical and ComputerModelling 28(4-8): 341-358.10.1016/S0895-7177(98)00126-5
  27. Naniewicz, Z. and Panagiotopoulos, P.D. (1995). MathematicalTheory of Hemivariational Inequalities and Applications, Marcel Dekker, Inc., New York, NY/Basel/Hong Kong.
  28. Neˇcas, J. andHlavaˇcek, I. (1981). Mathematical Theory of Elasticand Elastoplastic Bodies: An Introduction, Elsevier, Amsterdam.
  29. Panagiotopoulos, P.D. (1985). Inequality Problems in Mechanicsand Applications, Birkhauser, Basel.10.1007/978-1-4612-5152-1
  30. Rabinowicz, E. (1951). The nature of the static and kinetic coefficients of friction, Journal of Applied Physics22(11): 1373-1379.10.1063/1.1699869
  31. Shillor, M., Sofonea, M. and Telega, J.J. (2004). Models andAnalysis of Quasistatic Contact, Springer, Berlin.10.1007/b99799
  32. Tzaferopoulos, M.A., Mistakidis, E.S., Bisbos, C.D. and Panagiotopulos, P.D. (1995). Comparison of two methods for the solution of a class of nonconvex energy problems using convex minimization algorithms, Computers &Structures 57(6): 959-971.10.1016/0045-7949(95)00102-M
DOI: https://doi.org/10.2478/amcs-2013-0020 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 263 - 276
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Mikaël Barboteu, Krzysztof Bartosz, Piotr Kalita, published by University of Zielona Góra
This work is licensed under the Creative Commons License.