Have a personal or library account? Click to login
Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response Cover

Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response

Open Access
|Jun 2013

References

  1. Busłowicz, M. (2012). Robust stability of positive continuous-time linear systems with delays, InternationalJournal of Applied Mathematics and Computer Science20(4): 665-670, DOI: 10.2478/v10006-010-0049-8.10.2478/v10006-010-0049-8
  2. Busłowicz, M. and Ruszewski, A. (2012). Computer method for stability analysis of the Roesser type model of 2D continous-discrete linear systems, InternationalJournal of Applied Mathematics and Computer Science22(2): 401-408, DOI: 10.2478/v10006-012-0030-9.10.2478/v10006-012-0030-9
  3. Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of AppliedMathematics and Computer Science 22(2): 327-337, DOI: 10.2478/v10006-012-0024-7.10.2478/v10006-012-0024-7
  4. Fan, Y. and Li, W. (2004). Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis andApplications 299(2): 357-374.10.1016/j.jmaa.2004.02.061
  5. Freedman, H.I. (1976). Graphical stability, enrichment, and pest control by a natural enemy, Mathematical Biosciences31(3-4): 207-225.10.1016/0025-5564(76)90080-8
  6. Freedman, H.I. (1980). Deterministic Mathematical Models inPopulation Ecologys, Marcel Dekker, New York, NY.
  7. Grebogi, C., Ott, E. and Yorke, J.A. (1983). Crises, sudden changes in chaotic attractors, and transient chaos, PhysicaD: Nonlinear Phenomena 7(1-3): 181-200.10.1016/0167-2789(83)90126-4
  8. Grebogi, C., Ott, E. and Yorke, J.A. (1986). Critical exponent of chaotic transients in nonlinear dynamical systems, PhysicalReview Letters 57(11): 1284-1287. 10.1103/PhysRevLett.57.128410033406
  9. Grebogi, C., Ott, E., Romeiras, F. and Yorke, J.A. (1987). Critical exponents for crisis-induced intermittency, PhysicalReview A 36(11): 5365-5380.10.1103/PhysRevA.36.53659898807
  10. Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations,Dynamical Systems, and Bifurcations of VectorFields, Springer-Verlag, New York, NY.10.1007/978-1-4612-1140-2
  11. Hainzl, J. (1988). Stability and Hopf bifurcation in a predator-prey system with several parameters, SIAM Journalon Applied Mathematics 48(1): 170-190.10.1137/0148008
  12. Harrison, G.W. (1986). Multiple stable equilibria in a predator-prey system, Bulletin of Mathematical Biology48(2): 137-148.10.1016/S0092-8240(86)80003-9
  13. He, Z. and Lai, X. (2011). Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Analysis:Real World Applications 12(1): 403-417.10.1016/j.nonrwa.2010.06.026
  14. Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society ofCanada 97(45): 1-60.10.4039/entm9745fv
  15. Hsu, S.B. (1978). The application of the Poincare-transform to the Lotka-Volterra model, Journal of Mathematical Biology6(1): 67-73.10.1007/BF02478518
  16. Hu, Z., Teng, Z. and Zhang, L. (2011). Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Analysis:Real World Applications 12(4): 2356-2377.10.1016/j.nonrwa.2011.02.009
  17. Huang, J. and Xiao, D. (2004). Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response, Acta Mathematicae Applicatae Sinica20(1): 167-178.10.1007/s10255-004-0159-x
  18. Jing, Z. (1989). Local and global bifurcations and applications in a predator-prey system with several parameters, SystemsScience and Mathematical Sciences 2(4): 337-352.
  19. Jing, Z. , Chang, Y. and Guo, B. (2004). Bifurcation and chaos in discrete FitzHugh-Nagumo system, Chaos, Solitons &Fractals 21(3): 701-720.10.1016/j.chaos.2003.12.043
  20. Jing, Z. and Yang, J. (2006). Bifurcation and chaos in discrete-time predator-prey system, Chaos, Solitons &Fractals 27(1): 259-277.10.1016/j.chaos.2005.03.040
  21. Kazarinoff, N.D. and Van Den Driessche, P. (1978). A model predator-prey system with functional response, MathematicalBiosciences 39(1-2): 125-134.10.1016/0025-5564(78)90031-7
  22. Kuznetsov, Y.A. (1998). Elements of Applied Bifurcation Theory, Springer-Verlag, Berlin.
  23. Liu, X. and Xiao, D. (2007). Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons &Fractals 32(1): 80-94.10.1016/j.chaos.2005.10.081
  24. Liu, W., Li, D. and Yao, T. (2010). Qualitative analysis of Holling IV predator-prey system with double density retrie, Natural Sciences Journal of Harbin Normal University26(6): 8-12, (in Chinese).
  25. Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196-1199.10.1103/PhysRevLett.64.119610041332
  26. Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays, InternationalJournal of Applied Mathematics and Computer Science21(1): 127-135, DOI: 10.2478/v10006-011-0009-y.10.2478/v10006-011-0009-y
  27. Robinson, C. (1999). Dynamical Systems, Stability, SymbolicDynamics and Chaos, 2nd Edn., CRC Press, Boca Raton, FL/London/New York, NY/Washington, DC.
  28. Ruan, S. and Xiao, D. (2001). Global analysis in a predator-prey system with nonmonotonic functional response, SIAMJournal on Applied Mathematics 61(4): 1445-1472.10.1137/S0036139999361896
  29. Scholl, E. and Schuster, H.G. (2008). Handbook of Chaos Control, Wiley-VCH, Weinheim.
  30. Tong, Y., Liu, Z. and Wang, Y. (2012). Existence of period solutions for a predator-prey system with sparse effect and functional response on time scales, Communicationsin Nonlinear Science and Numerical Simulation17(8): 3360-3366.10.1016/j.cnsns.2011.12.003
  31. Wang, Y., Jing, Z. and Chan, K. (1999). Multiple limit cycles and global stability in predator-prey model, Acta MathematicaeApplicatae Sinica 15(2): 206-219.10.1007/BF02720497
  32. Wiggins, S. (1990). Introduction to Applied Nonlinear DynamicalSystems and Chaos, Springer-Verlag, Berlin.10.1007/978-1-4757-4067-7
  33. Wolkowicz, G.S.K. (1988). Bifurcation analysis of a predator-prey system involving group defence, SIAM Journalon Applied Mathematics 48(3): 592-606.10.1137/0148033
  34. Xu, C., Liao, M. and He, X. (2011). Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, International Journal of AppliedMathematics and Computer Science 21(1): 97-107, DOI: 10.2478/v10006-011-0007-0.10.2478/v10006-011-0007-0
  35. Zhang, Q., Yang, L. and Liao, D. (2011). Existence and exponential stability of a periodic solution for fuzzy cellar neural networks with time-varying delays, InternationalJournal of Applied Mathematics and Computer Science21(4): 649-658, DOI: 10.2478/v10006-011-0051-9.10.2478/v10006-011-0051-9
DOI: https://doi.org/10.2478/amcs-2013-0019 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 247 - 261
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Qiaoling Chen, Zhidong Teng, Zengyun Hu, published by University of Zielona Góra
This work is licensed under the Creative Commons License.