References
- Schalekamp T, De Boer A. Pharmacogenetics of oral anticoagulant therapy. Curr Pharm Des, 2010; 16(2):187-203.
- Kovac MK, Rakicevic LB, Radojkovic DP. Extreme sensitivity to acenocoumarol therapy in patient with both VKORC.-1639 A/A and CYP2C9*1/*3 genotypes. J Thromb Thrombolysis, 2011; 32(3):368-71.
- Wolkanin-Bartnik J, Pogorzelska H, Szperl M, et al. Impact of genetic and clinical factors on dose requirements and quality of anticoagulation therapy in Polish patients receiving acenocoumarol: dosing calculation algorithm. Pharmacogenet Genomics, 2013;23(11):611-8.
- Van Schie RM, Wessels JA, le Cessie S, et al. Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. Eur Heart J, 2011; 32(15):1909-17.
- Rathore SS, Agarwal SK, Pande S, et al. Therapeutic dosing of acenocoumarol: proposal of a population specific pharmacogenetic dosing algorithm and its validation in north Indians. PLoS One, 2012; 7(5):e37844.
- Pop TR, Vesa SC, Trifa AP, et al. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur J Clin Pharmacol, 2013.
- Markatos CN, Grouzi E, Politou M, et al. VKORC1 and CYP2C9 allelic variants influence acenocoumarol dose requirements in Greek patients. Pharmacogenomics, 2008;9(11):1631-8.
- Krishna D, Madhan S, Balachander J, et al. Effect of CYP2C9 and VKORC1 genetic polymorphisms on mean daily maintenance dose of acenocoumarol in South Indian patients. Thromb Res, 2013; 131(4):363-7.
- Cerezo-Manchado JJ, Rosafalco M, Anton AI, et al. Creating a genotype-based dosing algorithm for acenocoumarol steady dose. Thromb Haemost, 2013;109(1):146-53.
- Borobia AM, Lubomirov R, Ramirez E, et al. An acenocoumarol dosing algorithm using clinical and pharmacogenetic data in Spanish patients with thromboembolic disease. PLoS One, 2012;7(7):e41360.
- Tzveova, R., A. Dimitrova-Karamfilova, R. Saraeva, et al., Estimation and validation of acenocoumarol dosing algorithms in Bulgarian patients with cardiovascular diseases. Per Med, 2015;12(3):209-220.
- Schwarz UI, Stein CM. Genetic determinants of dose and clinical outcomes in patients receiving oral anticoagulants. Clin Pharmacol Ther, 2006;80(1):7-12.
- Kurnik, D., R. Loebstein, H. Halkin, et al. 10 years of oral anticoagulant pharmacogenomics: what difference will it make? A critical appraisal. Pharmacogenomics, 2009;10(12):1955-65.
- Buzoianu AD, Militaru FC, Vesa SC, et al. The impact of the CYP2C9 and VKORC1 polymorphisms on acenocoumarol dose requirements in a Romanian population. Blood Cells Mol Dis, 2013;50(3):166-70.
- Smires FZ, Habbal R, Moreau C, et al. Effect of different genetics variants: CYP2C9*2, CYP2C9*3 of cytochrome P-450 CYP2C9 and 1639G>A of the VKORC1 gene; On acenocoumarol requirement in Moroccan patients. Pathol Biol (Paris), 2013;61(3):88-92.
- Smires FZ, Moreau C, Habbal R, et al. Influence of genetics and non-genetic factors on acenocoumarol maintenance dose requirement in Moroccan patients. J Clin Pharm Ther, 2012;37(5): p. 594-8.
- Pathare A, Al Khabori M, Alkindi S, et al. Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients. J Hum Genet, 2012;57(10):665-9.
- Rusdiana T, Araki T, Nakamura T, et al. Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population. Eur J Clin Pharmacol, 2013;69(3):395-405.
- Bazan NS, Sabry NA, Rizk A, et al. Validation of pharmacogenetic algorithms and warfarin dosing table in Egyptian patients. Int J Clin Pharm, 2012;34(6):837-44.
- Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood, 2005;106(7):2329-33.
- Saraeva RB, Paskaleva IB, Doncheva E, et al. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CY-P3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther, 2007;32(6):641-9.
- Bodin L, Verstuyft C, Tregouet DA, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood, 2005;106(1):135-40.
- Kaur A, Khan F, Agrawal SS, et al. Cytochrome P450 (CYP2C9*2,*3) & vitamin-K epoxide reductase complex (VKORC1-1639G<A) gene polymorphisms & their effect on acenocoumarol dose in patients with mechanical heart valve replacement. Indian J Med Res, 2013;137(1):203-9.
- Kovac MK, Maslac AR, Rakicevic LB, et al. The c.-1639G>A polymorphism of the VKORC1 gene in Serbian population: retrospective study of the variability in response to oral anticoagulant therapy. Blood Coagul Fibrinolysis, 2010;21(6):558-63.
- Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CY-P2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther, 2006;80(1):13-22.
- Saraeva, R. Study of polymorphic variants in genes for xenobiotic metabolizing enzymes and glycoprotein-P: association with Balkan endemic nephropathy and with response to acenocoumarol drug therapy. PhD thesis. 2008. Medical University – Sofia.
- Jose R, Chandrasekaran A, Sam SS, et al. CYP2C9 and CY-P2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol, 2005;19(1):101-5.
- Visser LE, van Schaik RH, van Vliet M, et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost, 2004;92(1):61-6.
- Puehringer H, Loreth RM, Klose G, et al. VKORC1-1639G>A and CYP2C9*3 are the major genetic predictors of phenprocoumon dose requirement. Eur J Clin Pharmacol, 2010;66(6):591-8.
- Yuan HY, Chen JJ, Lee MT, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet, 2005;14(13):1745-51.
- Arboix M, Laporte JR, Frati ME, et al. Effect of age and sex on acenocoumarol requirements. Br J Clin Pharmacol, 1984;18(4):475-9.
- Perez-Andreu V, Roldan V, Anton AI, et al. Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood, 2009;113(20):4977-9.
- Pavani A, Naushad SM, Mishra RC, et al. Retrospective evidence for clinical validity of expanded genetic model in warfarin dose optimization in a South Indian population. Pharmacogenomics, 2012;13(8):869-78.
- Sconce E, Avery P, Wynne H, et al. Vitamin K supplementation can improve stability of anticoagulation for patients with unexplained variability in response to warfarin. Blood, 2007;109(6):2419-23.
- Teichert M, Eijgelsheim M, Rivadeneira F, et al. A genomewide association study of acenocoumarol maintenance dosage. Hum Mol Genet, 2009;18(19):3758-68.
- Wadelius M, Chen LY, Eriksson N, et al. Association of war-farin dose with genes involved in its action and metabolism. Hum Genet, 2007;121(1):23-34.
- Wadelius M, Sorlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J, 2004;4(1):40-8.
- Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther, 2008;84(3):326-31.
- Tham LS, Goh BC, Nafziger A, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther, 2006;80(4):346-55.
