Have a personal or library account? Click to login
Adaptive Hybrid LSTM-EKF Model for Reliable State of Charge Estimation in Lithium-Ion Batteries Under Noisy Conditions Cover

Adaptive Hybrid LSTM-EKF Model for Reliable State of Charge Estimation in Lithium-Ion Batteries Under Noisy Conditions

By: Karim KHEMIRI and  Ridha DJEBALI  
Open Access
|Dec 2025

References

  1. Zhou KQ, Qin Y, Yuen C. Graph neural network-based lithium-ion battery state of health estimation using partial discharging curve. Journal of Energy Storage [Internet]. 2024;100:113502. Available from: https://doi.org/10.1016/j.est.2024.113502.
  2. Wadi A, Abdel-Hafez M, Hussein AA. Computationally efficient State-of-Charge estimation in Li-Ion batteries using enhanced Dual-Kalman filter. Energies [Internet]. 2022;15(10):3717. Available from: https://doi.org/10.3390/en15103717
  3. J S, S SD, S R, R H. A comparative analysis of different types of SOC estimation using machine learning techniques for Li-Ion Battery Management System (BMS). International Conference on Inventive Computation Technologies (ICICT) [Internet]. 2025;1953-8. Available from: https://doi.org/10.1109/icict64420.2025.11004713
  4. Mehraj N, Mateu C, Bastida H, Li Y, Ding Y, Sciacovelli A, et al. Artificial intelligence in state of charge estimation: Pioneering approaches across energy storage systems. Energy [Internet]. 2025;335:138166. Available from: https://doi.org/10.1016/j.energy.2025.138166
  5. Zhang D, Zhong C, Xu P, Tian Y. Deep learning in the state of charge estimation for Li-Ion batteries of electric Vehicles: a review. Machines [Internet]. 2022;10(10):912. Available from: https://doi.org/10.3390/machines10100912.
  6. Guo R, Shen W. Recent advancements in battery state of power estimation technology: A comprehensive overview and error source analysis. Journal of Energy Storage [Internet]. 2024;103:114294. Available from: https://doi.org/10.1016/j.est.2024.114294.
  7. Li P, Ao Z, Hou J, Xiang S, Wang Z. Physics-informed mamba neural network with potential knowledge for state-of-charge estimation of lithium-ion batteries. Journal of Energy Storage [Internet]. 2025;123:116546. Available from: https://doi.org/10.1016/j.est.2025.116546
  8. Li S, He H, Wei Z, Zhao P. Edge computing for vehicle battery management: Cloud-based online state estimation. Journal of Energy Storage [Internet]. 2022;55:105502. Available from: https://doi.org/10.1016/j.est2022.105502
  9. Yilmaz M, Qinar N, Yazici A. Federated Learning-Based State of Charge estimation in electric vehicles using federated Adaptive client momentum. IEEE Access [Internet]. 2025;13:72128-41. Available from: https://doi.org/10.1109/access.2025.3563188
  10. Feng J, Cai F, Yang J, Wang S, Huang K. An adaptive state of charge estimation method of lithium-ion battery based on residual constraint fading factor unscented Kalman filter. IEEE Access [Internet]. 2022;10:44549-63. Available from: https://doi.org/10.1109/access.2022.3170093.
  11. Saha B, Goebel K. Battery data set [Internet]. Moffett Field (CA): NASA Ames Research Center; 2007 [cited 2020 May 11]. Available from: http://ti.arc.nasa.gov/project/prognostic-data-repository
  12. Lai X, Wang S, Ma S, Xie J, Zheng Y. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries. Electrochimica Acta [Internet]. 2019;330:135239. Available from: https://doi.org/10.1016/j.electacta.2019.135239
  13. Hmida FB, Khemiri K, Ragot J, Gossa M. Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs. Journal of the Franklin Institute [Internet]. 2012;349(7):2369-88. Available from: https://doi.org/10.1016/jJfrankNn.2012.05.004
  14. Hmida FB, Khemiri K, Ragot J, Gossa M. Unbiased Minimum-Vari-ance Filter for State and Fault Estimation of Linear Time-Varying Systems with Unknown Disturbances. Mathematical Problems in Engineering [Internet]. 2010;2010(1). Available from: https://doi.org/10.1155/2010/343586
  15. Khemiri K, Hmida F, Ragot J, Gossa M. Novel optimal recursive filter for state and fault estimation of linear stochastic systems with unknown disturbances. International Journal of Applied Mathematics and Computer Science [Internet]. 2011;21(4):629-37. Available from: https://doi.org/10.2478/v10006-011-0049-3
  16. Zhao J, Qu X, Wu Y, Fowler M, Burke AF. Artificial intelligence-driven real-world battery diagnostics. Energy and AI [Internet]. 2024;18:100419. Available from: https://doi.org/10.1016/j.egyai.2024.100419
  17. Pietro Pau D, Aniballi A. Tiny machine learning battery State-of-Charge estimation hardware accelerated. Applied Sciences [Internet]. 2024;14(14):6240. Available from: https://doi.org/10.3390/app14146240
  18. Hannan MA, How DNT, Lipu MSH, Ker PJ, Dong ZY, Mansur M et al. SOC estimation of li-Ion batteries with Learning Rate-Optimized Deep Fully Convolutional Network. IEEE Transactions on Power Electronics [Internet]. 2020;36(7):7349-53. Available from: https://doi.org/10.1109/tpel.2020.3041876
  19. Kunatsa T, Myburgh HC, De Freitas A. A review on State-of-Charge estimation methods, energy storage technologies and State-of-the-Art simulators: Recent developments and challenges. World Electric Vehicle Journal [Internet]. 2024;15(9):381. Available from: https://doi.org/10.3390/wevj15090381
  20. Wang S, Ma C, Gao H, Deng D, Fernandez C, Blaabjerg F. Improved hyperparameter Bayesian optimization-bidirectional long short-term memory optimization for high-precision battery state of charge estimation. Energy [Internet]. 2025;328:136598. Available from: https://doi.org/10.1016/j.energy.2025.136598
  21. Wang S, Fan Y, Jin S, Takyi-Aninakwa P, Fernandez C. Improved antinoise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries. Reliability Engineering & System Safety [Internet]. 2022;230:108920. Available from: https://doi.org/10.1016/j.ress.2022.108920
  22. Wang S, Gao H, Takyi-Aninakwa P, Guerrero JM, Fernandez C, Huang Q. Improved Multiple Feature-Electrochemical Thermal Coupling Modeling of Lithium-Ion Batteries at Low-Temperature with RealTime Coefficient Correction. Protection and Control of Modern Power Systems [Internet]. 2024;9(3):157-73. Available from: https://doi.org/10.23919/pcmp.2023.000257
  23. Djebali R, Pateyron B, Ferhi M, Ouerhani M, Khemiri K, Najari M, et al. Artificial Neural Networks for optimizing Alumina Al2O3 particle and droplet behavior in 12kK Ar-H2 atmospheric plasma spraying. Frontiers in Heat and Mass Transfer [Internet]. 2025;23(2):441 -61. Available from: https://doi.org/10.32604/fhmt.2025.063375
  24. Djebali R, Ferhi M, Mechighel F, Khemiri K, Bjaoui M, Ouerhani M, et al. Deep Learning Analysis and Numerical Simulation of Exergy and Nanofluid Heat Transfer Efficiency in a Two-Compartment Heat Exchanger with Internal Heat Generation and Baffles. 15th International Renewable Energy Congress (IREC) [Internet]. 2025;1-6. Available from: https://doi.org/10.1109/irec64614.2025.10926804
  25. Djebali R, Ferhi M, Khemiri K, Mechighel F, Pateyron B, Ouerhani M, et al. Integration of Artificial Neural Networks and Process Simulation for Optimizing Direct Current Atmospheric Plasma Spraying of Enhanced Zirconia Coatings. 15th International Renewable Energy Congress (IREC) [Internet]. 2025;1-6. Available from: https://doi.org/10.1109/irec64614.2025.10926821
  26. Yu Z, Liu J, Lu Y, Feng C, Li L, Wu Q. Combined EKF-LSTM algorithm-based enhanced state-of-charge estimation for energy storage container cells. Journal of Power Electronics [Internet]. 2024;24(8):1329-39. Available from: https://doi.org/10.1007/s43236-024-00801-9
  27. Khemiri K, Ferhi M, Hidouri N, Ennetta R, Djebali R. Robust State and Fault Estimation in Mobile Robots under Dynamic Noise Environments using Hybrid LSTM-EKF with Adaptive Weighting. Journal of Applied and Computational Mechanics; 2025 (In press). Available from: https://doi.org/10.22055/jacm.2025.48393.5203
  28. Singh S, Ebongue YE, Rezaei S, Birke KP. Hybrid modeling of Lithium-Ion battery: Physics-Informed Neural Network for battery state estimation. Batteries [Internet]. 2023;9(6):301. Available from: https://doi.org/10.3390/batteries9060301
  29. Baccouche I, Amara NEB. A comprehensive overview of AI based methods for SoC estimation of Li-ion Batteries in EV. 10th International Conference on Control, Decision and Information Technologies (CoDIT), [Internet]. 2024;9:1885-90. Available from: https://doi.org/10.1109/codit62066.2024.10708464
  30. Fu Y, Fu H. A Self-Calibration SOC estimation method for Lithium-Ion battery. IEEE Access [Internet]. 2023;11:37694-704. Available from: https://doi.org/10.1109/access.2023.3266663
  31. Kurucan M, Michailidis P, Michailidis I, Minelli F. A Modular Hybrid SOC-Estimation Framework with a Supervisor for Battery Management Systems Supporting Renewable Energy Integration in Smart Buildings. Energies [Internet]. 2025;18(17):4537. Available from: https://doi.org/10.3390/en18174537
  32. Chen C, Tao G, Shi J, Shen M, Zhu ZH. A Lithium-Ion battery degradation prediction model with uncertainty quantification for its predictive maintenance. IEEE Transactions on Industrial Electronics [Internet]. 2023;71(4):3650-9. Available from: https://doi.org/10.1109/tie.2023.3274874
  33. Liu C, Li H, Li K, Wu Y, Lv B. Deep learning for State of Health Estimation of Lithium-Ion batteries in Electric vehicles: A Systematic review. Energies [Internet]. 2025;18(6):1463. Available from: https://doi.org/10.3390/en18061463
  34. Chaudhari T, Chakravorty S. Analysis and advancements of the state of charge estimation methods in smart battery management system supported by lithium-ion battery operated electric vehicles. Next Energy [Internet]. 2025;8:100337. Available from: https://doi.org/10.1016/j.nxener.2025.100337
  35. Miao Y, Gao Y, Liu X, Liang Y, Liu L. Analysis of State-of-Charge Estimation Methods for Li-Ion batteries considering wide temperature range. Energies [Internet]. 2025;18(5):1188. Available from: https://doi.org/10.3390/en18051188
  36. Hong S, Kang M, Park H, Kim J, Baek J. Real-Time State-of-Charge estimation using an embedded board for Li-Ion batteries. Electronics [Internet]. 2022;11(13):2010. Available from: https://doi.org/10.3390/electronics11132010
  37. Liu Y, Lu Q, Yu Z, Chen Y, Yang Y. Reinforcement Learning-Enhanced adaptive scheduling of battery energy storage systems in energy markets. Energies [Internet]. 2024;17(21):5425. Available from: https://doi.org/10.3390/en17215425.
  38. Hu Y, Li W, Xu K, Zahid T, Qin F, Li C. Energy management strategy for a hybrid electric vehicle based on deep reinforcement learning. Applied Sciences [Internet]. 2018;8(2):187. Available from: https://doi.org/10.3390/app8020187.
  39. Zhang D, Zhong C, Xu P, Tian Y. Deep learning in the state of charge estimation for Li-Ion batteries of electric Vehicles: a review. Machines [Internet]. 2022;10(10):912. Available from: https://doi.org/10.3390/machines10100912
  40. Dong G, Gao G, Lou Y, Yu J, Chen C, Wei J. Hybrid Physics and Data-Driven Electrochemical States estimation for lithium-ion batteries. IEEE Transactions on Energy Conversion [Internet]. 2024;39(4):2689-700. Available from:https://doi.org/10.1109/tec.2024.3386784
  41. Manthopoulos A, Wang X. A review and comparison of Lithium-Ion Battery SOC estimation methods for electric vehicles. IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society [Internet]. 2020;2385-92. Available from: https://doi.org/10.1109/iecon43393.2020.9254918.
DOI: https://doi.org/10.2478/ama-2025-0085 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 761 - 767
Submitted on: Jun 26, 2025
|
Accepted on: Nov 9, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Karim KHEMIRI, Ridha DJEBALI, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.