References
- Zhou KQ, Qin Y, Yuen C. Graph neural network-based lithium-ion battery state of health estimation using partial discharging curve. Journal of Energy Storage [Internet]. 2024;100:113502. Available from: https://doi.org/10.1016/j.est.2024.113502.
- Wadi A, Abdel-Hafez M, Hussein AA. Computationally efficient State-of-Charge estimation in Li-Ion batteries using enhanced Dual-Kalman filter. Energies [Internet]. 2022;15(10):3717. Available from: https://doi.org/10.3390/en15103717
- J S, S SD, S R, R H. A comparative analysis of different types of SOC estimation using machine learning techniques for Li-Ion Battery Management System (BMS). International Conference on Inventive Computation Technologies (ICICT) [Internet]. 2025;1953-8. Available from: https://doi.org/10.1109/icict64420.2025.11004713
- Mehraj N, Mateu C, Bastida H, Li Y, Ding Y, Sciacovelli A, et al. Artificial intelligence in state of charge estimation: Pioneering approaches across energy storage systems. Energy [Internet]. 2025;335:138166. Available from: https://doi.org/10.1016/j.energy.2025.138166
- Zhang D, Zhong C, Xu P, Tian Y. Deep learning in the state of charge estimation for Li-Ion batteries of electric Vehicles: a review. Machines [Internet]. 2022;10(10):912. Available from: https://doi.org/10.3390/machines10100912.
- Guo R, Shen W. Recent advancements in battery state of power estimation technology: A comprehensive overview and error source analysis. Journal of Energy Storage [Internet]. 2024;103:114294. Available from: https://doi.org/10.1016/j.est.2024.114294.
- Li P, Ao Z, Hou J, Xiang S, Wang Z. Physics-informed mamba neural network with potential knowledge for state-of-charge estimation of lithium-ion batteries. Journal of Energy Storage [Internet]. 2025;123:116546. Available from: https://doi.org/10.1016/j.est.2025.116546
- Li S, He H, Wei Z, Zhao P. Edge computing for vehicle battery management: Cloud-based online state estimation. Journal of Energy Storage [Internet]. 2022;55:105502. Available from: https://doi.org/10.1016/j.est2022.105502
- Yilmaz M, Qinar N, Yazici A. Federated Learning-Based State of Charge estimation in electric vehicles using federated Adaptive client momentum. IEEE Access [Internet]. 2025;13:72128-41. Available from: https://doi.org/10.1109/access.2025.3563188
- Feng J, Cai F, Yang J, Wang S, Huang K. An adaptive state of charge estimation method of lithium-ion battery based on residual constraint fading factor unscented Kalman filter. IEEE Access [Internet]. 2022;10:44549-63. Available from: https://doi.org/10.1109/access.2022.3170093.
- Saha B, Goebel K. Battery data set [Internet]. Moffett Field (CA): NASA Ames Research Center; 2007 [cited 2020 May 11]. Available from: http://ti.arc.nasa.gov/project/prognostic-data-repository
- Lai X, Wang S, Ma S, Xie J, Zheng Y. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries. Electrochimica Acta [Internet]. 2019;330:135239. Available from: https://doi.org/10.1016/j.electacta.2019.135239
- Hmida FB, Khemiri K, Ragot J, Gossa M. Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs. Journal of the Franklin Institute [Internet]. 2012;349(7):2369-88. Available from: https://doi.org/10.1016/jJfrankNn.2012.05.004
- Hmida FB, Khemiri K, Ragot J, Gossa M. Unbiased Minimum-Vari-ance Filter for State and Fault Estimation of Linear Time-Varying Systems with Unknown Disturbances. Mathematical Problems in Engineering [Internet]. 2010;2010(1). Available from: https://doi.org/10.1155/2010/343586
- Khemiri K, Hmida F, Ragot J, Gossa M. Novel optimal recursive filter for state and fault estimation of linear stochastic systems with unknown disturbances. International Journal of Applied Mathematics and Computer Science [Internet]. 2011;21(4):629-37. Available from: https://doi.org/10.2478/v10006-011-0049-3
- Zhao J, Qu X, Wu Y, Fowler M, Burke AF. Artificial intelligence-driven real-world battery diagnostics. Energy and AI [Internet]. 2024;18:100419. Available from: https://doi.org/10.1016/j.egyai.2024.100419
- Pietro Pau D, Aniballi A. Tiny machine learning battery State-of-Charge estimation hardware accelerated. Applied Sciences [Internet]. 2024;14(14):6240. Available from: https://doi.org/10.3390/app14146240
- Hannan MA, How DNT, Lipu MSH, Ker PJ, Dong ZY, Mansur M et al. SOC estimation of li-Ion batteries with Learning Rate-Optimized Deep Fully Convolutional Network. IEEE Transactions on Power Electronics [Internet]. 2020;36(7):7349-53. Available from: https://doi.org/10.1109/tpel.2020.3041876
- Kunatsa T, Myburgh HC, De Freitas A. A review on State-of-Charge estimation methods, energy storage technologies and State-of-the-Art simulators: Recent developments and challenges. World Electric Vehicle Journal [Internet]. 2024;15(9):381. Available from: https://doi.org/10.3390/wevj15090381
- Wang S, Ma C, Gao H, Deng D, Fernandez C, Blaabjerg F. Improved hyperparameter Bayesian optimization-bidirectional long short-term memory optimization for high-precision battery state of charge estimation. Energy [Internet]. 2025;328:136598. Available from: https://doi.org/10.1016/j.energy.2025.136598
- Wang S, Fan Y, Jin S, Takyi-Aninakwa P, Fernandez C. Improved antinoise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries. Reliability Engineering & System Safety [Internet]. 2022;230:108920. Available from: https://doi.org/10.1016/j.ress.2022.108920
- Wang S, Gao H, Takyi-Aninakwa P, Guerrero JM, Fernandez C, Huang Q. Improved Multiple Feature-Electrochemical Thermal Coupling Modeling of Lithium-Ion Batteries at Low-Temperature with RealTime Coefficient Correction. Protection and Control of Modern Power Systems [Internet]. 2024;9(3):157-73. Available from: https://doi.org/10.23919/pcmp.2023.000257
- Djebali R, Pateyron B, Ferhi M, Ouerhani M, Khemiri K, Najari M, et al. Artificial Neural Networks for optimizing Alumina Al2O3 particle and droplet behavior in 12kK Ar-H2 atmospheric plasma spraying. Frontiers in Heat and Mass Transfer [Internet]. 2025;23(2):441 -61. Available from: https://doi.org/10.32604/fhmt.2025.063375
- Djebali R, Ferhi M, Mechighel F, Khemiri K, Bjaoui M, Ouerhani M, et al. Deep Learning Analysis and Numerical Simulation of Exergy and Nanofluid Heat Transfer Efficiency in a Two-Compartment Heat Exchanger with Internal Heat Generation and Baffles. 15th International Renewable Energy Congress (IREC) [Internet]. 2025;1-6. Available from: https://doi.org/10.1109/irec64614.2025.10926804
- Djebali R, Ferhi M, Khemiri K, Mechighel F, Pateyron B, Ouerhani M, et al. Integration of Artificial Neural Networks and Process Simulation for Optimizing Direct Current Atmospheric Plasma Spraying of Enhanced Zirconia Coatings. 15th International Renewable Energy Congress (IREC) [Internet]. 2025;1-6. Available from: https://doi.org/10.1109/irec64614.2025.10926821
- Yu Z, Liu J, Lu Y, Feng C, Li L, Wu Q. Combined EKF-LSTM algorithm-based enhanced state-of-charge estimation for energy storage container cells. Journal of Power Electronics [Internet]. 2024;24(8):1329-39. Available from: https://doi.org/10.1007/s43236-024-00801-9
- Khemiri K, Ferhi M, Hidouri N, Ennetta R, Djebali R. Robust State and Fault Estimation in Mobile Robots under Dynamic Noise Environments using Hybrid LSTM-EKF with Adaptive Weighting. Journal of Applied and Computational Mechanics; 2025 (In press). Available from: https://doi.org/10.22055/jacm.2025.48393.5203
- Singh S, Ebongue YE, Rezaei S, Birke KP. Hybrid modeling of Lithium-Ion battery: Physics-Informed Neural Network for battery state estimation. Batteries [Internet]. 2023;9(6):301. Available from: https://doi.org/10.3390/batteries9060301
- Baccouche I, Amara NEB. A comprehensive overview of AI based methods for SoC estimation of Li-ion Batteries in EV. 10th International Conference on Control, Decision and Information Technologies (CoDIT), [Internet]. 2024;9:1885-90. Available from: https://doi.org/10.1109/codit62066.2024.10708464
- Fu Y, Fu H. A Self-Calibration SOC estimation method for Lithium-Ion battery. IEEE Access [Internet]. 2023;11:37694-704. Available from: https://doi.org/10.1109/access.2023.3266663
- Kurucan M, Michailidis P, Michailidis I, Minelli F. A Modular Hybrid SOC-Estimation Framework with a Supervisor for Battery Management Systems Supporting Renewable Energy Integration in Smart Buildings. Energies [Internet]. 2025;18(17):4537. Available from: https://doi.org/10.3390/en18174537
- Chen C, Tao G, Shi J, Shen M, Zhu ZH. A Lithium-Ion battery degradation prediction model with uncertainty quantification for its predictive maintenance. IEEE Transactions on Industrial Electronics [Internet]. 2023;71(4):3650-9. Available from: https://doi.org/10.1109/tie.2023.3274874
- Liu C, Li H, Li K, Wu Y, Lv B. Deep learning for State of Health Estimation of Lithium-Ion batteries in Electric vehicles: A Systematic review. Energies [Internet]. 2025;18(6):1463. Available from: https://doi.org/10.3390/en18061463
- Chaudhari T, Chakravorty S. Analysis and advancements of the state of charge estimation methods in smart battery management system supported by lithium-ion battery operated electric vehicles. Next Energy [Internet]. 2025;8:100337. Available from: https://doi.org/10.1016/j.nxener.2025.100337
- Miao Y, Gao Y, Liu X, Liang Y, Liu L. Analysis of State-of-Charge Estimation Methods for Li-Ion batteries considering wide temperature range. Energies [Internet]. 2025;18(5):1188. Available from: https://doi.org/10.3390/en18051188
- Hong S, Kang M, Park H, Kim J, Baek J. Real-Time State-of-Charge estimation using an embedded board for Li-Ion batteries. Electronics [Internet]. 2022;11(13):2010. Available from: https://doi.org/10.3390/electronics11132010
- Liu Y, Lu Q, Yu Z, Chen Y, Yang Y. Reinforcement Learning-Enhanced adaptive scheduling of battery energy storage systems in energy markets. Energies [Internet]. 2024;17(21):5425. Available from: https://doi.org/10.3390/en17215425.
- Hu Y, Li W, Xu K, Zahid T, Qin F, Li C. Energy management strategy for a hybrid electric vehicle based on deep reinforcement learning. Applied Sciences [Internet]. 2018;8(2):187. Available from: https://doi.org/10.3390/app8020187.
- Zhang D, Zhong C, Xu P, Tian Y. Deep learning in the state of charge estimation for Li-Ion batteries of electric Vehicles: a review. Machines [Internet]. 2022;10(10):912. Available from: https://doi.org/10.3390/machines10100912
- Dong G, Gao G, Lou Y, Yu J, Chen C, Wei J. Hybrid Physics and Data-Driven Electrochemical States estimation for lithium-ion batteries. IEEE Transactions on Energy Conversion [Internet]. 2024;39(4):2689-700. Available from:https://doi.org/10.1109/tec.2024.3386784
- Manthopoulos A, Wang X. A review and comparison of Lithium-Ion Battery SOC estimation methods for electric vehicles. IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society [Internet]. 2020;2385-92. Available from: https://doi.org/10.1109/iecon43393.2020.9254918.