References
- Zhou B, Liu B, Zhang SG. The advancement of 7XXX series aluminum alloys for aircraft structures: a review. Metals. 2021;11(5): 718-747. https://doi.org/10.3390/met11050718
- Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, et al. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280(1): 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X
- Georgantzia E, Gkantou M, Kamaris GS. Aluminium alloys as structural material: A review of research. Eng Struct. 2021;227: 111372. https://doi.org/10.1016/j.engstruct.2020.111372
- Dorward RC, Pritchett TR. Advanced aluminium alloys for aircraft and aerospace applications. Mater Des. 1988;9(2): 63-69. https://doi.org/10.1016/0261-3069(88)90076-3
- Nieh TG, Wadsworth J, Sherby OD. Superplasticity in metals and ce-ramics. New York: Cambridge University Press; 1997.
- Kawasaki M, Langdon TG. Developing superplasticity in ultrafine-grained metals. Acta Phys Pol A. 2015;128(4): 470-478. https://doi.org/10.12693/APhysPolA.128.470
- Furukawa M, Horita Z, Nemoto M, Langdon TG. Review: processing of metals by equal-channel angular pressing. J Mater Sci. 2001;36: 2835-2843. https://doi.org/10.1023/A:1017932417043
- Zrnik J, Dobatkin SV, Mamuzi I. Processing of metals by severe plastic deformation (SPD) – Structure and mechanical properties respond. Metalurgija. 2008;47(3): 211-216.
- Horita Z, Fujinami T, Nemoto M, Langdon TG. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall Mater Trans A. 2000;31(3): 691-701. https://doi.org/10.1007/s11661-000-0011-8
- Kapoor R, Chakravartty JK. Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing. Acta Mater. 2007;55: 5408-5418. https://doi.org/10.1016/j.actamat.2007.05.049
- Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal pro-cessing: Fundamentals and applications. Prog Mater Sci. 2008;53(6): 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002.
- Gunderov D, Stotskiy A, Lebedev Y, Mukaeva V. Influence of HPT and accumulative high-pressure torsion on the structure and HV of a zirco-nium alloy. Metals. 2021;11(4): 573. https://doi.org/10.3390/met11040573
- Do Xuan Truong, Nguyen Manh Tien, Nguyen Manh Hung, Nguyen Truong An. Effect of the cyclic expansion-extrusion process on me-chanical properties and the grain refinement of AA6061 aluminum al-loy. J Military Sci Technol. 2023;87: 100-107. https://doi.org/10.54939/1859-1043.j.mst.87.2023.100-107
- Fan H, Yan Z, Zhang Z, Wang Q. Effects of cyclic expansion-extrusion with an asymmetrical extrusion cavity (CEE-AEC) on the microstruc-ture and texture evolution of Mg-13Gd-4Y-2Zn-0.5Zr alloys. Mater Technol. 2020;54(4): 495-501. https://doi.org/10.17222/mit.2019.251
- Nguyen MT, Le VT, Le MH, Nguyen TA. Superplastic properties in a Ti5Al3Mo1.5V titanium alloy processed by multidirectional forging pro-cess. Mater Lett. 2022;307: 131004. https://doi.org/10.1016/j.matlet.2021.131004
- G. A. Manjunath, S. Shivakumar, R. Fernandez, R. Nikhil, and P. C. Sharath. A review on effect of multi-directional forging/multi-axial forg-ing on mechanical and microstructural properties of aluminum alloy. Mater. Today: Proc. 2021;47(9): 2565-2569. https://doi.org/10.1016/j.matpr.2021.05.056
- Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured mate-rials from severe plastic deformation. Prog Mater Sci. 2000;45(2): 103-189. https://doi.org/10.1016/S0079-6425(99)00007-9.
- Yan L, Li Q, Chen X. Research of severe plastic deformation on mag-nesium alloys. Trans Mater Heat Treat. 2018;39(11): 1-9. https://doi.org/10.13289/j.issn.1009-6264.2018-0308
- Lee S, Tazoe K, Mohamed IF, Horita Z. Strengthening of AA7075 alloy by processing with high-pressure sliding (HPS) and subsequent aging. Mater Sci Eng A. 2015;628: 56-61. https://doi.org/10.1016/j.msea.2015.01.026
- Ghalehbandi SM, Fallahi A, Hosseini-Toudeshky H. Influence of aging on mechanical properties of equal channel angular pressed aluminum alloy 7075. Proc Inst Mech Eng B. 2015;231(10): 1803-1811. https://doi.org/10.1177/0954405415612370
- Xu X, Zhang Q, Hu N, Huang Y, Langdon TG. Using an Al-Cu binary alloy to compare processing by multi-axial compression and high-pres-sure torsion. Mater Sci Eng A. 2013;588: 280-287. https://doi.org/10.1016/j.msea.2013.09.001
- G. A. Manjunath, S. Shivakumar, S. P. Avadhani, and P. C. Sharath. Investigation of mechanical properties and microstructural behavior of 7050 aluminium alloy by multi directional forging technique. Mater. To-day: Proc. 2020;27(2): 1147-1151. https://doi.org/10.1016/j.matpr.2020.02.001
- Ghanbari BF, Arabi H, Abbasi SM, Boutorabi MA. Manufacturing of nanostructured Ti-6Al-4V alloy via closed-die isothermal multi-axial-temperature forging: Microstructure and mechanical properties. Int J Adv Manuf Technol. 2016;87: 755-763. https://doi.org/10.1007/s00170-016-8343-8
- Wei C, Lei Z, Du S, Chen R, Yin Y, Niu C, et al. Microstructures and mechanical properties of Al-Zn-Mg-Cu alloys under multi-directional severe strain and aging. Materials. 2023;16(12): 4441. https://doi.org/10.3390/ma16124441
- Manjunath GA, Shivakumar S, Fernandez R, Nikhil R, Sharath PC. A review on effect of multi-directional forging/multi-axial forging on me-chanical and microstructural properties of aluminum alloy. Mater To-day Proc. 2021;47(10): 2565-2569. https://doi.org/10.1016/j.matpr.2021.05.056
- Kawasaki M, Langdon TG. Superplasticity in ultrafine-grained materi-als. Rev Adv Mater Sci. 2018;54(1): 46-55. https://doi.org/10.1515/rams-2018-0019
- Nguyen MT. Experimental determination of process parameters for su-perplastic forming from AA7075 aluminum alloy. Suranaree J Sci Technol. 2022;29(5): 0101631.
- Prasad VJ, Mohanarao N, Kamaluddin S, Bhattacharya SS. Develop-ment of superplasticity in an Al-Mg alloy through severe plastic defor-mation. Int J Adv Manuf Technol. 2018;94: 2973-2979. https://doi.org/10.1007/s00170-017-1060-0
- Giuliano G. Superplastic forming of advanced metallic materials. Cam-bridge: Woodhead Publishing; 2011.
- Xu GF, Cao XW, Zhang T, Li Q, Wang Z, Wang W, et al. Achieving high strain rate superplasticity of an Al-Mg-Sc-Zr alloy by a new asym-metrical rolling technology. Mater Sci Eng A. 2016;672: 98-107. https://doi.org/10.1016/j.msea.2016.06.070
- Zhang S, Hu W, Berghammer R, Gottstein G. Microstructure evolution and deformation behavior of ultrafine-grained Al-Zn-Mg alloys with fine η′ precipitates. Acta Mater. 2010;58(20): 6695-6705. https://doi.org/10.1016/j.actamat.2010.08.034
- Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann. 2008;57(2): 716-735. https://doi.org/10.1016/j.cirp.2008.09.005
- Asgharzadeh H, McQueen HJ. Grain growth and stabilisation of nanostructured aluminium at high temperatures: Review. Mater Sci Technol. 2015;31(9): 1016-1034. https://doi.org/10.1179/1743284714Y.0000000706
- Liew KM, Tan MJ, Tan H. Analysis of grain growth during superplastic deformation. Mech Adv Mater Struct. 2007;14(7): 541-547. https://doi.org/10.1080/15376490701586023
- Nieh TG, Hsiung LM, Wadsworth J, Kaibyshev R. High strain rate su-perplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy. Acta Mater. 1998;46(8): 2789-2800. https://doi.org/10.1016/S1359-6454(97)00452-7
- Li M, Pan Q, Shi Y, Sun X, Xiang H. High strain rate superplasticity in an Al-Mg-Sc-Zr alloy processed via simple rolling. Mater Sci Eng A. 2017;687: 298-305. https://doi.org/10.1016/j.msea.2017.01.091
- Wang XG, Li QS, Wu RR, Zhang XY, Ma L. A review on superplastic formation behavior of Al alloys. Adv Mater Sci Eng. 2018;2018: 1-17. https://doi.org/10.1155/2018/7606140
- Abo-Elkhier M, Soliman MS. Superplastic characteristics of fine-grained 7475 aluminum alloy. J Mater Eng Perform. 2006;15(1): 76-80. https://doi.org/10.1361/105994906X83394
- Ye L, Zhang X, Zheng D, Liu S, Tang J. Superplastic behavior of an Al-Mg-Li alloy. J Alloys Compd. 2009;487(1-2): 109-115. https://doi.org/10.1016/j.jallcom.2009.07.148