Have a personal or library account? Click to login
Strength and Superplasticity of AA 7075 Aluminum Alloy Fabricated By Multidirectional Forging Cover

Strength and Superplasticity of AA 7075 Aluminum Alloy Fabricated By Multidirectional Forging

Open Access
|Dec 2025

References

  1. Zhou B, Liu B, Zhang SG. The advancement of 7XXX series aluminum alloys for aircraft structures: a review. Metals. 2021;11(5): 718-747. https://doi.org/10.3390/met11050718
  2. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, et al. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280(1): 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X
  3. Georgantzia E, Gkantou M, Kamaris GS. Aluminium alloys as structural material: A review of research. Eng Struct. 2021;227: 111372. https://doi.org/10.1016/j.engstruct.2020.111372
  4. Dorward RC, Pritchett TR. Advanced aluminium alloys for aircraft and aerospace applications. Mater Des. 1988;9(2): 63-69. https://doi.org/10.1016/0261-3069(88)90076-3
  5. Nieh TG, Wadsworth J, Sherby OD. Superplasticity in metals and ce-ramics. New York: Cambridge University Press; 1997.
  6. Kawasaki M, Langdon TG. Developing superplasticity in ultrafine-grained metals. Acta Phys Pol A. 2015;128(4): 470-478. https://doi.org/10.12693/APhysPolA.128.470
  7. Furukawa M, Horita Z, Nemoto M, Langdon TG. Review: processing of metals by equal-channel angular pressing. J Mater Sci. 2001;36: 2835-2843. https://doi.org/10.1023/A:1017932417043
  8. Zrnik J, Dobatkin SV, Mamuzi I. Processing of metals by severe plastic deformation (SPD) – Structure and mechanical properties respond. Metalurgija. 2008;47(3): 211-216.
  9. Horita Z, Fujinami T, Nemoto M, Langdon TG. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall Mater Trans A. 2000;31(3): 691-701. https://doi.org/10.1007/s11661-000-0011-8
  10. Kapoor R, Chakravartty JK. Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing. Acta Mater. 2007;55: 5408-5418. https://doi.org/10.1016/j.actamat.2007.05.049
  11. Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal pro-cessing: Fundamentals and applications. Prog Mater Sci. 2008;53(6): 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002.
  12. Gunderov D, Stotskiy A, Lebedev Y, Mukaeva V. Influence of HPT and accumulative high-pressure torsion on the structure and HV of a zirco-nium alloy. Metals. 2021;11(4): 573. https://doi.org/10.3390/met11040573
  13. Do Xuan Truong, Nguyen Manh Tien, Nguyen Manh Hung, Nguyen Truong An. Effect of the cyclic expansion-extrusion process on me-chanical properties and the grain refinement of AA6061 aluminum al-loy. J Military Sci Technol. 2023;87: 100-107. https://doi.org/10.54939/1859-1043.j.mst.87.2023.100-107
  14. Fan H, Yan Z, Zhang Z, Wang Q. Effects of cyclic expansion-extrusion with an asymmetrical extrusion cavity (CEE-AEC) on the microstruc-ture and texture evolution of Mg-13Gd-4Y-2Zn-0.5Zr alloys. Mater Technol. 2020;54(4): 495-501. https://doi.org/10.17222/mit.2019.251
  15. Nguyen MT, Le VT, Le MH, Nguyen TA. Superplastic properties in a Ti5Al3Mo1.5V titanium alloy processed by multidirectional forging pro-cess. Mater Lett. 2022;307: 131004. https://doi.org/10.1016/j.matlet.2021.131004
  16. G. A. Manjunath, S. Shivakumar, R. Fernandez, R. Nikhil, and P. C. Sharath. A review on effect of multi-directional forging/multi-axial forg-ing on mechanical and microstructural properties of aluminum alloy. Mater. Today: Proc. 2021;47(9): 2565-2569. https://doi.org/10.1016/j.matpr.2021.05.056
  17. Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured mate-rials from severe plastic deformation. Prog Mater Sci. 2000;45(2): 103-189. https://doi.org/10.1016/S0079-6425(99)00007-9.
  18. Yan L, Li Q, Chen X. Research of severe plastic deformation on mag-nesium alloys. Trans Mater Heat Treat. 2018;39(11): 1-9. https://doi.org/10.13289/j.issn.1009-6264.2018-0308
  19. Lee S, Tazoe K, Mohamed IF, Horita Z. Strengthening of AA7075 alloy by processing with high-pressure sliding (HPS) and subsequent aging. Mater Sci Eng A. 2015;628: 56-61. https://doi.org/10.1016/j.msea.2015.01.026
  20. Ghalehbandi SM, Fallahi A, Hosseini-Toudeshky H. Influence of aging on mechanical properties of equal channel angular pressed aluminum alloy 7075. Proc Inst Mech Eng B. 2015;231(10): 1803-1811. https://doi.org/10.1177/0954405415612370
  21. Xu X, Zhang Q, Hu N, Huang Y, Langdon TG. Using an Al-Cu binary alloy to compare processing by multi-axial compression and high-pres-sure torsion. Mater Sci Eng A. 2013;588: 280-287. https://doi.org/10.1016/j.msea.2013.09.001
  22. G. A. Manjunath, S. Shivakumar, S. P. Avadhani, and P. C. Sharath. Investigation of mechanical properties and microstructural behavior of 7050 aluminium alloy by multi directional forging technique. Mater. To-day: Proc. 2020;27(2): 1147-1151. https://doi.org/10.1016/j.matpr.2020.02.001
  23. Ghanbari BF, Arabi H, Abbasi SM, Boutorabi MA. Manufacturing of nanostructured Ti-6Al-4V alloy via closed-die isothermal multi-axial-temperature forging: Microstructure and mechanical properties. Int J Adv Manuf Technol. 2016;87: 755-763. https://doi.org/10.1007/s00170-016-8343-8
  24. Wei C, Lei Z, Du S, Chen R, Yin Y, Niu C, et al. Microstructures and mechanical properties of Al-Zn-Mg-Cu alloys under multi-directional severe strain and aging. Materials. 2023;16(12): 4441. https://doi.org/10.3390/ma16124441
  25. Manjunath GA, Shivakumar S, Fernandez R, Nikhil R, Sharath PC. A review on effect of multi-directional forging/multi-axial forging on me-chanical and microstructural properties of aluminum alloy. Mater To-day Proc. 2021;47(10): 2565-2569. https://doi.org/10.1016/j.matpr.2021.05.056
  26. Kawasaki M, Langdon TG. Superplasticity in ultrafine-grained materi-als. Rev Adv Mater Sci. 2018;54(1): 46-55. https://doi.org/10.1515/rams-2018-0019
  27. Nguyen MT. Experimental determination of process parameters for su-perplastic forming from AA7075 aluminum alloy. Suranaree J Sci Technol. 2022;29(5): 0101631.
  28. Prasad VJ, Mohanarao N, Kamaluddin S, Bhattacharya SS. Develop-ment of superplasticity in an Al-Mg alloy through severe plastic defor-mation. Int J Adv Manuf Technol. 2018;94: 2973-2979. https://doi.org/10.1007/s00170-017-1060-0
  29. Giuliano G. Superplastic forming of advanced metallic materials. Cam-bridge: Woodhead Publishing; 2011.
  30. Xu GF, Cao XW, Zhang T, Li Q, Wang Z, Wang W, et al. Achieving high strain rate superplasticity of an Al-Mg-Sc-Zr alloy by a new asym-metrical rolling technology. Mater Sci Eng A. 2016;672: 98-107. https://doi.org/10.1016/j.msea.2016.06.070
  31. Zhang S, Hu W, Berghammer R, Gottstein G. Microstructure evolution and deformation behavior of ultrafine-grained Al-Zn-Mg alloys with fine η′ precipitates. Acta Mater. 2010;58(20): 6695-6705. https://doi.org/10.1016/j.actamat.2010.08.034
  32. Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann. 2008;57(2): 716-735. https://doi.org/10.1016/j.cirp.2008.09.005
  33. Asgharzadeh H, McQueen HJ. Grain growth and stabilisation of nanostructured aluminium at high temperatures: Review. Mater Sci Technol. 2015;31(9): 1016-1034. https://doi.org/10.1179/1743284714Y.0000000706
  34. Liew KM, Tan MJ, Tan H. Analysis of grain growth during superplastic deformation. Mech Adv Mater Struct. 2007;14(7): 541-547. https://doi.org/10.1080/15376490701586023
  35. Nieh TG, Hsiung LM, Wadsworth J, Kaibyshev R. High strain rate su-perplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy. Acta Mater. 1998;46(8): 2789-2800. https://doi.org/10.1016/S1359-6454(97)00452-7
  36. Li M, Pan Q, Shi Y, Sun X, Xiang H. High strain rate superplasticity in an Al-Mg-Sc-Zr alloy processed via simple rolling. Mater Sci Eng A. 2017;687: 298-305. https://doi.org/10.1016/j.msea.2017.01.091
  37. Wang XG, Li QS, Wu RR, Zhang XY, Ma L. A review on superplastic formation behavior of Al alloys. Adv Mater Sci Eng. 2018;2018: 1-17. https://doi.org/10.1155/2018/7606140
  38. Abo-Elkhier M, Soliman MS. Superplastic characteristics of fine-grained 7475 aluminum alloy. J Mater Eng Perform. 2006;15(1): 76-80. https://doi.org/10.1361/105994906X83394
  39. Ye L, Zhang X, Zheng D, Liu S, Tang J. Superplastic behavior of an Al-Mg-Li alloy. J Alloys Compd. 2009;487(1-2): 109-115. https://doi.org/10.1016/j.jallcom.2009.07.148
DOI: https://doi.org/10.2478/ama-2025-0083 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 742 - 748
Submitted on: Aug 15, 2025
|
Accepted on: Nov 11, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Manh Hung LE, Manh Tien NGUYEN, Truong An NGUYEN, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.