References
- Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based poly-mer nanocomposites. Polymer. 2011;52(1):5–25. https://doi.org/10.1016/j.polymer.2010.11.042
- Geim AK, Novoselov KS. The rise of graphene. Nature Mater. 2007;6(3):183–91. https://doi.org/10.1038/nmat1849
- Maity N, Mandal A, Nandi AK. Hierarchical nanostructured polyaniline functionalized graphene/poly(vinylidene fluoride) composites for improved dielectric performances. Polymer. 2016;103:83–97. https://doi.org/10.1016/j.polymer.2016.09.048
- Reif J, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano. 2009;3(12):3884–90. https://doi.org/10.1021/nn9010472
- Kundalwal SI, Shingare KB, Rathi A. Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam. Int J Mech Mater Des. 2019;15(3):447–70. https://doi.org/10.1007/s10999-018-9417-6
- Wu H, Yang J, Kitipornchai S. Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Composite Structures. 2017;162:244–54. https://doi.org/10.1016/j.compstruct.2016.12.001
- Qaderi S, Ebrahimi F, Seyfi A. An investigation of the vibration of multilayer composite beams reinforced by graphene platelets resting on two parameter viscoelastic foundation. SN Appl Sci. 2019;1(5):399. https://doi.org/10.1007/s42452-019-0252-7
- Feng C, Kitipornchai S, Yang J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Composites Part B: Engineering. 2017;110:132–40. https://doi.org/10.1016/j.compositesb.2016.11.024
- Reza Barati M, Zenkour AM. Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Composite Structures. 2017;181:194–202. https://doi.org/10.1016/j.compstruct.2017.08.082
- Song M, Kitipornchai S, Yang J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composite Structures. 2017;159:579–88. https://doi.org/10.1016/j.compstruct.2016.09.070
- Zhou C, Zhang Z, Zhang J, Fang Y, Tahouneh V. Vibration analysis of FG porous rectangular plates reinforced by graphene platelets. Steel and Composite Structures. 2020;34(2):215–26. https://doi.org/10.12989/SCS.2020.34.2.215
- Sobhy M, Zenkour AM. Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations. Steel and Composite Structures. 2019;33(2):195–208. https://doi.org/10.12989/SCS.2019.33.2.195
- Ganapathi M, Anirudh B, Anant C, Polit O. Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect. Mechanics of Advanced Materials and Structures. 2021;28(7):741–52. https://doi.org/10.1080/15376494.2019.1601310
- Mazari MY, Hamza B, Dehbi F, Cheikh A, Saimi A, Bensaid I. Hybrid Galerkin-machine learning approach for dynamic analysis of nanocomposite beams under thermal effects. Mechanics Based Design of Structures and Machines. 2025;1–18. https://doi.org/10.1080/15397734.2025.2550531
- Mazari MY, Hamza B, Slamene A, Dehbi F, Bensaid I, Mokhtari M. Integrating machine learning with vibration analysis for graphene platelet nanocomposite beams subjected to magnetic loading. Mechanics of Advanced Materials and Structures. 2025;1–11. https://doi.org/10.1080/15376494.2025.2476785
- Wang Z, Chen S huan, Han W. The static shape control for intelligent structures. Finite Elements in Analysis and Design. 1997;26(4): 303-14. https://doi.org/10.1016/S0168-874X(97)00086-3
- Hou W, Zheng Y, Guo W, Pengcheng G. Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system. Journal of Cleaner Production. 2021;291:125283. https://doi.org/10.1016/j.jclepro.2020.125283
- El Harti K, Rahmoune M, Sanbi M, Saadani R, Bentaleb M, Rahmoune M. Dynamic control of Euler Bernoulli FG porous beam under thermal loading with bonded piezoelectric materials. Ferroelectrics. 2020;558(1):104–16. https://doi.org/10.1080/00150193.2020.1735895
- Zenkour AM, Aljadani MH. Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory. Mechanics of Materials. 2020;151:103632. https://doi.org/10.1016/j.mechmat.2020.103632
- Alazwari MA, Zenkour AM, Sobhy M. Hygrothermal Buckling of Smart Graphene/Piezoelectric Nanocomposite Circular Plates on an Elastic Substrate via DQM. Mathematics. 2022;10(15):2638. https://doi.org/10.3390/math10152638
- Chen Q, Zheng S, Li Z, Zeng C. Size-dependent free vibration analysis of functionally graded porous piezoelectric sandwich nanobeam reinforced with graphene platelets with consideration of flexoelectric effect. Smart Mater Struct. 2021;30(3):035008. https://doi.org/10.1088/1361-665X/abd963
- Sobhy M, Al Mukahal FHH. Analysis of Electromagnetic Effects on Vibration of Functionally Graded GPLs Reinforced Piezoelectromagnetic Plates on an Elastic Substrate. Crystals. 2022;12(4):487. https://doi.org/10.3390/cryst12040487
- Mao JJ, Zhang W. Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Composite Structures. 2019;216:392–405. https://doi.org/10.1016/j.compstruct.2019.02.095
- Liang Y, Zheng S, Wang H, Chen D. Nonlinear isogeometric analysis of axially functionally graded graphene platelet-reinforced composite curved beams. Composite Structures. 2024;330:117871. https://doi.org/10.1016/j.compstruct.2023.117871
- Zhang X, Zhao X, Li Y, Wang H, Zheng S. Effect of flexoelectricity on the nonlinear static and dynamic response of functionally graded porous graphene platelets-reinforced composite plates integrated with piezoelectric layers. Int J Mech Mater Des. 2025;21(4):877–903. https://doi.org/10.1007/s10999-025-09765-5
- Houalef IE, Bensaid I, Saimi A, Cheikh A. Free Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Higher Order Refined Composite Beams Using Differential Quadrature Finite Element Method. TECM [Internet]. 2023 [cited 2025 Oct 14]. https://doi.org/10.13052/ejcm2642-2085.3143
- Yang J, Wu H, Kitipornchai S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Composite Structures. 2017;161:111–8. https://doi.org/10.1016/j.compstruct.2016.11.048
- Kundalwal SI. Review on micromechanics of nano- and micro-fiber reinforced composites. Polymer Composites. 2018;39(12):4243.74. https://doi.org/10.1002/pc.24569
- Gupta M, Ray MC, Patil ND, Kundalwal SI. Dynamic modelling and analysis of smart carbon nanotube-based hybrid composite beams: Analytical and finite element study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2021;235(10):2185–206. https://doi.org/10.1177/14644207211019773
- Nebab M, Dahmane M, Belqassim A, Atmane HA, Bernard F, Benadouda M, et al. Fundamental frequencies of cracked FGM beams with influence of porosity and Winkler/Pasternak/Kerr foundation support using a new quasi-3D HSDT. Mechanics of Advanced Materials and Structures. 2024;31(28):10639–51. https://doi.org/10.1080/15376494.2023.2294371
- Djilali Djebbour K, Mokhtar N, Hassen AA, Alghanmi RA, Hadji L, Ri-adh B. An enhanced quasi-3D HSDT for free vibration analysis of porous FG-CNT beams on a new concept of orthotropic VE-foundations. Mechanics of Advanced Materials and Structures. 2025;32(5):893–909. https://doi.org/10.1080/15376494.2024.2356728
- Alsebai F, Al Mukahal FHH, Sobhy M. Semi-Analytical Solution for Thermo-Piezoelectric Bending of FG Porous Plates Reinforced with Graphene Platelets. Mathematics. 2022;10(21):4104. https://doi.org/10.3390/math10214104
- Sobhy M, Abazid MA, Al Mukahal FH. Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions. Advances in Mechanical Engineering. 2022;14(4):168781322210910. https://doi.org/10.1177/16878132221091005
- Ahmed S, Abdelhamid H, Ismail B, Ahmed F. An Differential Quadrature Finite Element and the Differential Quadrature Hierarchical Finite Element Methods for the Dynamics Analysis of on Board Shaft. TECM [Internet]. 2021 [cited 2025 Oct 14]. https://doi.org/10.13052/ejcm1779-7179.29461
- Dahmane M, Benadouda M, Fellah A, Saimi A, Hassen AA, Bensaid I. Porosities-dependent wave propagation in bi-directional functionally graded cantilever beam with higher-order shear model. Mechanics of Advanced Materials and Structures. 2024;31(26):8018–28. https://doi.org/10.1080/15376494.2023.2253546
- Bensaid I, Saimi A, Civalek Ö. Effect of two-dimensional material distribution on dynamic and buckling responses of graded ceramic-metal higher order beams with stretch effect. Mechanics of Advanced Materials and Structures. 2024;31(8):1760–76. https://doi.org/10.1080/15376494.2022.2142342
- Şimşek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design. 2010;240(4):697–705. https://doi.org/10.1016/j.nucengdes.2009.12.013