Have a personal or library account? Click to login
Thermo-mechanical dynamics analysis of smart FG-GPL nanocomposite beams by DQ-FEM Cover

Thermo-mechanical dynamics analysis of smart FG-GPL nanocomposite beams by DQ-FEM

Open Access
|Dec 2025

References

  1. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based poly-mer nanocomposites. Polymer. 2011;52(1):5–25. https://doi.org/10.1016/j.polymer.2010.11.042
  2. Geim AK, Novoselov KS. The rise of graphene. Nature Mater. 2007;6(3):183–91. https://doi.org/10.1038/nmat1849
  3. Maity N, Mandal A, Nandi AK. Hierarchical nanostructured polyaniline functionalized graphene/poly(vinylidene fluoride) composites for improved dielectric performances. Polymer. 2016;103:83–97. https://doi.org/10.1016/j.polymer.2016.09.048
  4. Reif J, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano. 2009;3(12):3884–90. https://doi.org/10.1021/nn9010472
  5. Kundalwal SI, Shingare KB, Rathi A. Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam. Int J Mech Mater Des. 2019;15(3):447–70. https://doi.org/10.1007/s10999-018-9417-6
  6. Wu H, Yang J, Kitipornchai S. Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Composite Structures. 2017;162:244–54. https://doi.org/10.1016/j.compstruct.2016.12.001
  7. Qaderi S, Ebrahimi F, Seyfi A. An investigation of the vibration of multilayer composite beams reinforced by graphene platelets resting on two parameter viscoelastic foundation. SN Appl Sci. 2019;1(5):399. https://doi.org/10.1007/s42452-019-0252-7
  8. Feng C, Kitipornchai S, Yang J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Composites Part B: Engineering. 2017;110:132–40. https://doi.org/10.1016/j.compositesb.2016.11.024
  9. Reza Barati M, Zenkour AM. Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Composite Structures. 2017;181:194–202. https://doi.org/10.1016/j.compstruct.2017.08.082
  10. Song M, Kitipornchai S, Yang J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composite Structures. 2017;159:579–88. https://doi.org/10.1016/j.compstruct.2016.09.070
  11. Zhou C, Zhang Z, Zhang J, Fang Y, Tahouneh V. Vibration analysis of FG porous rectangular plates reinforced by graphene platelets. Steel and Composite Structures. 2020;34(2):215–26. https://doi.org/10.12989/SCS.2020.34.2.215
  12. Sobhy M, Zenkour AM. Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations. Steel and Composite Structures. 2019;33(2):195–208. https://doi.org/10.12989/SCS.2019.33.2.195
  13. Ganapathi M, Anirudh B, Anant C, Polit O. Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect. Mechanics of Advanced Materials and Structures. 2021;28(7):741–52. https://doi.org/10.1080/15376494.2019.1601310
  14. Mazari MY, Hamza B, Dehbi F, Cheikh A, Saimi A, Bensaid I. Hybrid Galerkin-machine learning approach for dynamic analysis of nanocomposite beams under thermal effects. Mechanics Based Design of Structures and Machines. 2025;1–18. https://doi.org/10.1080/15397734.2025.2550531
  15. Mazari MY, Hamza B, Slamene A, Dehbi F, Bensaid I, Mokhtari M. Integrating machine learning with vibration analysis for graphene platelet nanocomposite beams subjected to magnetic loading. Mechanics of Advanced Materials and Structures. 2025;1–11. https://doi.org/10.1080/15376494.2025.2476785
  16. Wang Z, Chen S huan, Han W. The static shape control for intelligent structures. Finite Elements in Analysis and Design. 1997;26(4): 303-14. https://doi.org/10.1016/S0168-874X(97)00086-3
  17. Hou W, Zheng Y, Guo W, Pengcheng G. Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system. Journal of Cleaner Production. 2021;291:125283. https://doi.org/10.1016/j.jclepro.2020.125283
  18. El Harti K, Rahmoune M, Sanbi M, Saadani R, Bentaleb M, Rahmoune M. Dynamic control of Euler Bernoulli FG porous beam under thermal loading with bonded piezoelectric materials. Ferroelectrics. 2020;558(1):104–16. https://doi.org/10.1080/00150193.2020.1735895
  19. Zenkour AM, Aljadani MH. Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory. Mechanics of Materials. 2020;151:103632. https://doi.org/10.1016/j.mechmat.2020.103632
  20. Alazwari MA, Zenkour AM, Sobhy M. Hygrothermal Buckling of Smart Graphene/Piezoelectric Nanocomposite Circular Plates on an Elastic Substrate via DQM. Mathematics. 2022;10(15):2638. https://doi.org/10.3390/math10152638
  21. Chen Q, Zheng S, Li Z, Zeng C. Size-dependent free vibration analysis of functionally graded porous piezoelectric sandwich nanobeam reinforced with graphene platelets with consideration of flexoelectric effect. Smart Mater Struct. 2021;30(3):035008. https://doi.org/10.1088/1361-665X/abd963
  22. Sobhy M, Al Mukahal FHH. Analysis of Electromagnetic Effects on Vibration of Functionally Graded GPLs Reinforced Piezoelectromagnetic Plates on an Elastic Substrate. Crystals. 2022;12(4):487. https://doi.org/10.3390/cryst12040487
  23. Mao JJ, Zhang W. Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Composite Structures. 2019;216:392–405. https://doi.org/10.1016/j.compstruct.2019.02.095
  24. Liang Y, Zheng S, Wang H, Chen D. Nonlinear isogeometric analysis of axially functionally graded graphene platelet-reinforced composite curved beams. Composite Structures. 2024;330:117871. https://doi.org/10.1016/j.compstruct.2023.117871
  25. Zhang X, Zhao X, Li Y, Wang H, Zheng S. Effect of flexoelectricity on the nonlinear static and dynamic response of functionally graded porous graphene platelets-reinforced composite plates integrated with piezoelectric layers. Int J Mech Mater Des. 2025;21(4):877–903. https://doi.org/10.1007/s10999-025-09765-5
  26. Houalef IE, Bensaid I, Saimi A, Cheikh A. Free Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Higher Order Refined Composite Beams Using Differential Quadrature Finite Element Method. TECM [Internet]. 2023 [cited 2025 Oct 14]. https://doi.org/10.13052/ejcm2642-2085.3143
  27. Yang J, Wu H, Kitipornchai S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Composite Structures. 2017;161:111–8. https://doi.org/10.1016/j.compstruct.2016.11.048
  28. Kundalwal SI. Review on micromechanics of nano- and micro-fiber reinforced composites. Polymer Composites. 2018;39(12):4243.74. https://doi.org/10.1002/pc.24569
  29. Gupta M, Ray MC, Patil ND, Kundalwal SI. Dynamic modelling and analysis of smart carbon nanotube-based hybrid composite beams: Analytical and finite element study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2021;235(10):2185–206. https://doi.org/10.1177/14644207211019773
  30. Nebab M, Dahmane M, Belqassim A, Atmane HA, Bernard F, Benadouda M, et al. Fundamental frequencies of cracked FGM beams with influence of porosity and Winkler/Pasternak/Kerr foundation support using a new quasi-3D HSDT. Mechanics of Advanced Materials and Structures. 2024;31(28):10639–51. https://doi.org/10.1080/15376494.2023.2294371
  31. Djilali Djebbour K, Mokhtar N, Hassen AA, Alghanmi RA, Hadji L, Ri-adh B. An enhanced quasi-3D HSDT for free vibration analysis of porous FG-CNT beams on a new concept of orthotropic VE-foundations. Mechanics of Advanced Materials and Structures. 2025;32(5):893–909. https://doi.org/10.1080/15376494.2024.2356728
  32. Alsebai F, Al Mukahal FHH, Sobhy M. Semi-Analytical Solution for Thermo-Piezoelectric Bending of FG Porous Plates Reinforced with Graphene Platelets. Mathematics. 2022;10(21):4104. https://doi.org/10.3390/math10214104
  33. Sobhy M, Abazid MA, Al Mukahal FH. Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions. Advances in Mechanical Engineering. 2022;14(4):168781322210910. https://doi.org/10.1177/16878132221091005
  34. Ahmed S, Abdelhamid H, Ismail B, Ahmed F. An Differential Quadrature Finite Element and the Differential Quadrature Hierarchical Finite Element Methods for the Dynamics Analysis of on Board Shaft. TECM [Internet]. 2021 [cited 2025 Oct 14]. https://doi.org/10.13052/ejcm1779-7179.29461
  35. Dahmane M, Benadouda M, Fellah A, Saimi A, Hassen AA, Bensaid I. Porosities-dependent wave propagation in bi-directional functionally graded cantilever beam with higher-order shear model. Mechanics of Advanced Materials and Structures. 2024;31(26):8018–28. https://doi.org/10.1080/15376494.2023.2253546
  36. Bensaid I, Saimi A, Civalek Ö. Effect of two-dimensional material distribution on dynamic and buckling responses of graded ceramic-metal higher order beams with stretch effect. Mechanics of Advanced Materials and Structures. 2024;31(8):1760–76. https://doi.org/10.1080/15376494.2022.2142342
  37. Şimşek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design. 2010;240(4):697–705. https://doi.org/10.1016/j.nucengdes.2009.12.013
DOI: https://doi.org/10.2478/ama-2025-0081 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 719 - 732
Submitted on: Apr 27, 2025
|
Accepted on: Sep 28, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mohammed Yassine Mazari, Ismail Bensaid, Ahmed Saimi, Abdelmadjid Cheikh, Ihab Eddine Houalef, Billel Hamza, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.