Have a personal or library account? Click to login
Analysis Of Portevin-Le Châtelier Effect Data Using Diffferent Sample Entropy Measures Cover

Analysis Of Portevin-Le Châtelier Effect Data Using Diffferent Sample Entropy Measures

By: Marzena MUCHA  
Open Access
|Dec 2025

References

  1. Portevin A, Le Chatelier F. Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. Compt Rend Acad Sci Paris. 1923;176:507-510.
  2. Bergstrom Y, Roberts W. The application of dislocation model to dynamic strain ageing in α-iron containing interstitial atoms. Acta Metall. 1971;19:815-823. https://doi.org/10.1016/0001-6160(71)90138-6
  3. Yilmaz A. The Portevin-Le Chatelier effect: a review of experimental findings. Sci Technol Adv Mater. 2011;12(6). https://doi.org/10.1088/1468-6996/12/6/063001
  4. Reyne B, Manach PY, Moës N. Macroscopic consequences of Piobert–Lüders and Portevin–Le Chatelier bands during tensile deformation in Al-Mg alloys. Mater Sci Eng A. 2019;746:187-196. https://doi.org/10.1016/j.msea.2019.01.009
  5. Sarkar A, Maloy SA, Murty KL. Investigation of Portevin-Le Chatelier effect in HT-9 steel. Mater Sci Eng A. 2015;631:120-125. https://doi.org/10.1016/j.msea.2015.02.022
  6. Cui C, Zhang R, Zhou Y, Sun X. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms. J Mater Sci Technol. 2020;51:16-31. https://doi.org/10.1016/j.jmst.2020.03.023
  7. Graff S, Dierke H, Forest S, Neuhäuser H, Strudel JL. Finite element simulations of the Portevin–Le Chatelier effect in metal–matrix composites. Philos Mag. 2008;88:3389–3414. https://doi.org/10.1080/14786430802108472
  8. Lipski A, Mroziński S. The effects of temperature on the strength properties of aluminium alloy 2024-T3. Acta Mech Autom. 2012;6(3):62-66.
  9. Coër J, Manach PY, Laurent H, Oliveira MC, Menezes LF. Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg alloy in simple shear. Mech Res Commun. 2013;48:1-7. https://doi.org/10.1016/j.mechrescom.2012.11.008
  10. Manach PY, Thuillier S, Yoon JW, Coër J, Laurent H. Kinematics of Portevin-Le Chatelier bands in simple shear. Int J Plast. 2014;58:66-83. https://doi.org/10.1016/j.ijplas.2014.02.005
  11. Cottrell AH, Bilby BA. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A. 1949;62(1):49-62. https://doi.org/10.1088/0370-1298/62/1/308
  12. Kozłowska A, Grzegorczyk B, Morawiec M, Grajcar A. Explanation of the PLC Effect in Advanced High-Strength Medium-Mn Steels. A Review. Materials. 2019;12(24):1-14. https://doi.org/10.3390/ma12244175
  13. Jiang H, Zhang Q, Chen X, Chen Z, Jiang Z, Wu X, Fan J. Three types of Portevin–Le Chatelier effects: Experiment and modelling. Acta Mater. 2007;55(7):2219-2228. https://doi.org/10.1016/j.actamat.2006.10.029
  14. Hu Q, Zhang Q, Cao P, Fu S. Thermal analyses and simulations of the type A and type B Portevin–Le Chatelier effects in an Al–Mg alloy. Acta Mater. 2012;60(4):1647-1657. https://doi.org/10.1016/j.actamat.2011.12.003
  15. Schwink CH, Nortmann A. The present experimental knowledge of dynamic strain ageing in binary f.c.c. solid solutions. Mater Sci Eng A. 1997;234:1-7. https://doi.org/10.1016/S0921-5093(97)00139-1
  16. Sarkar A, Barat P, Mukherjee P. Multiscale entropy analysis of the Portevin-Le Chatelier Effect in an Al-2.5%Mg alloy. Fractals. 2010;18:319-325. https://doi.org/10.1142/S0218348X10004944
  17. Xu J, Chen G, Fu S. Complexity analysis of the Portevin-Le Chatelier in an Al alloy at different temperatures. Theor Appl Mech Lett. 2021;11(2):100233. https://doi.org/10.1016/j.taml.2021.100233
  18. Brechtl J, Xie X, Wang Z, Qiao J, Liaw PK. Complexity analysis of serrated flows in a bulk metallic glass under constrained and unconstrained conditions. Mater Sci Eng A. 2020;771:138585. https://doi.org/10.1016/j.msea.2019.138585
  19. Brechtl J, Chen B, Xie X, Ren Y, Venable JD, Liaw PK, Zinkle SJ. Entropy modeling on serrated flows in carburized steels. Mater Sci Eng A. 2019;753:135-145. https://doi.org/10.1016/j.msea.2019.02.096
  20. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  21. Namdari A, Li Z. A review of entropy measures for uncertainty quantification of stochastic processes. Adv Mech Eng. 2019;11:1-14. https://doi.org/10.1177/1687814019857
  22. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278: H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H203
  23. Wu H, Zhou J, Xie C, Zhang J, Huang Y. Two-Dimensional Time Series Sample Entropy Algorithm: Applications to Rotor Axis Orbit Feature Identification. Mech Syst Signal Process. 2021;147:107123. https://doi.org/10.1016/j.ymssp.2020.107123
  24. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88:2297–2301. https://doi.org/10.1073/pnas.88.6.229
  25. Mayer CC, Bachler M, Hörtenhuber M, Stocker C, Holzinger A, Wassertheurer S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics. 2014;15(6):S2. https://doi.org/10.1186/1471-2105-15-S6-S2
  26. Trybek P, Nowakowski M, Salowka J, Spiechowicz J, Machura L. Sample Entropy of sEMG Signals at Different Stages of Rectal Cancer Treatment. Entropy. 2018;20:863. https://doi.org/10.3390/e20110863
  27. Azami H, da Silva LEV, Omoto ACM, Humeau-Heurtier A. Two-dimensional dispersion entropy: An information-theoretic method for irregularity analysis of images. Signal Process Image Commun. 2019;75:178-187. https://doi.org/10.1016/j.image.2019.04.013
  28. Olbryś J, Majewska E. Regularity in Stock Market Indices within Turbulence Periods: The Sample Entropy Approach. Entropy. 2022;24:921. https://doi.org/10.3390/e24070921
  29. Costa M, Goldberger AL, Peng CK. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys Rev Lett. 2002;89:068102. https://doi.org/10.1103/PhysRevLett.89.068102
  30. McCormick PG. Theory of flow localization due to dynamic strain aging. Acta Metall. 1988;36(12):3061-3067. https://doi.org/10.1016/0001-6160(88)90043-0
  31. Zhang S, McCormick PG, Estrin Y. The morphology of Portevin-Le Chatelier bands: Finite element simulation for Al-Mg-Si. Acta Mater. 2001;49(6):1087-1094. https://doi.org/10.1016/S1359-6454(00)00380-3
  32. Böhlke T, Bondár G, Estrin Y, Lebyodkin MA. Geometrically non-linear modeling of the Portevin-Le Chatelier effect. Comput Mater Sci. 2009;44(4):1076-1088. https://doi.org/10.1016/j.commatsci.2008.07.036
  33. Wang WM. Stationary and propagative instabilities in metals: a computational point of view [dissertation]. Delft: Delft University of Technology; 1997.
  34. Hähner P, Rizzi E. On the kinematics of Portevin–Le Chatelier bands: theoretical and numerical modelling. Acta Mater. 2003;51(12):3385-3397. https://doi.org/10.1016/S1359-6454(03)00122-8
  35. Mucha M, Rose L, Wcisło B, Menzel A, Pamin J. Experiments and numerical simulations of Lueders bands and Portevin-Le Chatelier effect in aluminium alloy AW5083. Arch Mech. 2023;75(3):301-336. https://doi.org/10.24423/aom.4204
DOI: https://doi.org/10.2478/ama-2025-0080 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 710 - 718
Submitted on: Feb 11, 2025
Accepted on: Nov 30, 2025
Published on: Dec 19, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marzena MUCHA, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.