References
- Ren H, Sun L, Guo J, Han C. A dataset and benchmark for multimodal biometric recognition based on fingerprint and finger vein. IEEE Trans Inf Forensics Secur. 2022; 17: 2030-2043.
- https://doi.org/10.1109/TIFS.2022.3175599
- Moriuchi E. An empirical study of consumers' intention to use biometric facial recognition as a payment method. Psychol Mark. 2021; 38(10): 1741-1765. https://doi.org/10.1002/mar.21495
- Yin Y, He S, Zhang R, Chang H, Zhang J. Deep learning for iris recognition: a review. Neural Comput Appl. 2025; 37:11125-11173. https://doi.org/10.1007/s00521-025-11109-5
- Shakil S, Arora D, Zaidi T. Feature based classification of voice based biometric data through Machine learning algorithm. Mater Today Proc. 2022; 51, 240-247. https://doi.org/10.1016/j.matpr.2021.05.261
- Jia W, Xia W, Zhang B, Zhao Y, Fei L, Kang W, Huang D, Guo G. A survey on dorsal hand vein biometrics. Patt Recog. 2021; 120, 108122. https://doi.org/10.1016/j.patcog. 2021.108122
- Shen C, Yu S, Wang J, Huang GQ, Wang L. A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets, and Challenges. IEEE Trans Biom Behav Identity Sci. 2024; 7(2), 270-292 https://doi.org/10.1109/TBIOM.2024.3486345
- Asif M, Tiwana MI, Khan US, Ahmad MW, Qureshi WS, Iqbal J. Human gait recognition subject to different covariate factors in a multiview environment. Results Eng. 2022; 15: 100556. https://doi.org/10.1016/j.rineng.2022.100556
- Webber M, Rojas RF. Human activity recognition with accelerometer and gyroscope: A data fusion approach. IEEE Sens J. 2021; 21(15): 16979-16989. https://doi.org/10.1109/JSEN.2021.3079883
- Terrier P. Gait recognition via deep learning of the center-of-pres-sure trajectory. Appl Sci. 2020; 10(3): 774. https://doi.org/10.3390/app10030774
- Horst F, Slijepcevic D, Simak M, Horsak B, Schöllhorn WI, Zeppelzauer M. Modeling biological individuality using machine learning: A study on human gait. Comput Struct Biotechnol J. 2023; 21: 3414-3423. https://doi.org/10.1016/j.csbj.2023.06.009
- Duncanson KA, Thwaites S, Booth D, Hanly G, Robertson WS, Abbasnejad E, Thewlis D. Deep metric learning for scalable gait-based person re-identification using force platform data. Sensors. 2023; 23(7): 3392. https://doi.org/10.3390/s23073392
- Moustakidis sP, Theocharis JB, Giakas G. Subject recognition based on ground reaction force measurements of gait signals. IEEE Trans Syst Man Cybern B Cybern. 2008; 38(6): 1476-1485. https://doi.org/10.1109/TSMCB.2008.927722
- Michałowska M, Walczak T, Grabski JK, Cieślak M. People identification based on dynamic determinants of human gait. Vibrations in Physical Systems. 2018; 29: 2018012.
- Derlatka M, Bogdan M. Ensemble kNN classifiers for human gait recognition based on ground reaction forces. Proc - 8th Conf Human Syst Interact 2015. 2015: 88-93. https://doi.org/10.1109/HSI.2015.7170648
- Shafew A, Kim D, Kim D. Simple 1D CNN Model for Accurate Classification of Gait Patterns Using GRF Data. J Infor Commun Converg Eng. 2024; 22(4), 303-309. https://doi.org/10.56977/jicce.2024.22.4.303
- Pandey C, Roy DS, Poonia RC, Altameem A, Nayak SR, Verma A, Saudagar AKJ. GaitRec-Net: A Deep Neural Network for Gait Disorder Detection Using Ground Reaction Force. PPAR Res. 2022;1: 9355015. https://doi.org/10.1155/2022/9355015
- Hernandez-Diaz K, Alonso-Fernandez F, Bigun J. One-shot learning for periocular recognition: Exploring the effect of domain adaptation and data bias on deep representations. IEEE Access. 2023; 11: 100396-100413. https://doi.org/10.1109/ACCESS.2023.3315234
- Zhou X, He J, Yang C. An ensemble learning method based on deep neural network and group decision making. Knowl Based Syst 2022; 239:107801. https://doi.org/10.1016/j.knosys.2021.107801
- Derlatka M, Borowska M. Ensemble of heterogeneous base classifiers for human gait recognition. Sensors. 2023; 23(1): 508. https://doi.org/10.3390/s23010508
- Mohammed A, Kora R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J King Saud Univ Comput Inf Sci. 2023; 35(2): 757-774. https://doi.org/10.1016/j.jksuci.2023.01.014
- Mogan JN, Lee CP, Lim KM, Ali M, Alqahtani A. Gait-CNN-ViT: Multi-model gait recognition with convolutional neural networks and vision transformer. Sensors, 2023; 23(8): 3809. https://doi.org/10.3390/s23083809
- Derlatka M, Parfieniuk M. Real-world measurements of ground reaction forces of normal gait of young adults wearing various footwear. Sci Data. 2023; 10(1): 60. https://doi.org/10.1038/s41597-023-01964-z
- Saleh AM, Hamoud T. Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation. J Big Data. 2021; 8(1): 1. https://doi.org/10.1186/s40537-020-00387-6
- Kingma DP. Adam: A method for stochastic optimization. arXiv preprint. 2014; arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
- Nakach FZ, Idri A, Zerouaoui H. Deep Hybrid Bagging Ensembles for Classifying Histopathological Breast Cancer Images. Proc - 15th Int Conf Agents Artif Intell – ICAART 2023. 2023;2:289-300. https://doi.org/10.5220/0011704200003393