Have a personal or library account? Click to login
The Application of an Ensemble of Convolutional Neural Networks for Human Recognition Based on the Ground Reaction Forces Cover

The Application of an Ensemble of Convolutional Neural Networks for Human Recognition Based on the Ground Reaction Forces

By: Marcin DERLATKA  
Open Access
|Dec 2025

References

  1. Ren H, Sun L, Guo J, Han C. A dataset and benchmark for multimodal biometric recognition based on fingerprint and finger vein. IEEE Trans Inf Forensics Secur. 2022; 17: 2030-2043.
  2. https://doi.org/10.1109/TIFS.2022.3175599
  3. Moriuchi E. An empirical study of consumers' intention to use biometric facial recognition as a payment method. Psychol Mark. 2021; 38(10): 1741-1765. https://doi.org/10.1002/mar.21495
  4. Yin Y, He S, Zhang R, Chang H, Zhang J. Deep learning for iris recognition: a review. Neural Comput Appl. 2025; 37:11125-11173. https://doi.org/10.1007/s00521-025-11109-5
  5. Shakil S, Arora D, Zaidi T. Feature based classification of voice based biometric data through Machine learning algorithm. Mater Today Proc. 2022; 51, 240-247. https://doi.org/10.1016/j.matpr.2021.05.261
  6. Jia W, Xia W, Zhang B, Zhao Y, Fei L, Kang W, Huang D, Guo G. A survey on dorsal hand vein biometrics. Patt Recog. 2021; 120, 108122. https://doi.org/10.1016/j.patcog. 2021.108122
  7. Shen C, Yu S, Wang J, Huang GQ, Wang L. A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets, and Challenges. IEEE Trans Biom Behav Identity Sci. 2024; 7(2), 270-292 https://doi.org/10.1109/TBIOM.2024.3486345
  8. Asif M, Tiwana MI, Khan US, Ahmad MW, Qureshi WS, Iqbal J. Human gait recognition subject to different covariate factors in a multiview environment. Results Eng. 2022; 15: 100556. https://doi.org/10.1016/j.rineng.2022.100556
  9. Webber M, Rojas RF. Human activity recognition with accelerometer and gyroscope: A data fusion approach. IEEE Sens J. 2021; 21(15): 16979-16989. https://doi.org/10.1109/JSEN.2021.3079883
  10. Terrier P. Gait recognition via deep learning of the center-of-pres-sure trajectory. Appl Sci. 2020; 10(3): 774. https://doi.org/10.3390/app10030774
  11. Horst F, Slijepcevic D, Simak M, Horsak B, Schöllhorn WI, Zeppelzauer M. Modeling biological individuality using machine learning: A study on human gait. Comput Struct Biotechnol J. 2023; 21: 3414-3423. https://doi.org/10.1016/j.csbj.2023.06.009
  12. Duncanson KA, Thwaites S, Booth D, Hanly G, Robertson WS, Abbasnejad E, Thewlis D. Deep metric learning for scalable gait-based person re-identification using force platform data. Sensors. 2023; 23(7): 3392. https://doi.org/10.3390/s23073392
  13. Moustakidis sP, Theocharis JB, Giakas G. Subject recognition based on ground reaction force measurements of gait signals. IEEE Trans Syst Man Cybern B Cybern. 2008; 38(6): 1476-1485. https://doi.org/10.1109/TSMCB.2008.927722
  14. Michałowska M, Walczak T, Grabski JK, Cieślak M. People identification based on dynamic determinants of human gait. Vibrations in Physical Systems. 2018; 29: 2018012.
  15. Derlatka M, Bogdan M. Ensemble kNN classifiers for human gait recognition based on ground reaction forces. Proc - 8th Conf Human Syst Interact 2015. 2015: 88-93. https://doi.org/10.1109/HSI.2015.7170648
  16. Shafew A, Kim D, Kim D. Simple 1D CNN Model for Accurate Classification of Gait Patterns Using GRF Data. J Infor Commun Converg Eng. 2024; 22(4), 303-309. https://doi.org/10.56977/jicce.2024.22.4.303
  17. Pandey C, Roy DS, Poonia RC, Altameem A, Nayak SR, Verma A, Saudagar AKJ. GaitRec-Net: A Deep Neural Network for Gait Disorder Detection Using Ground Reaction Force. PPAR Res. 2022;1: 9355015. https://doi.org/10.1155/2022/9355015
  18. Hernandez-Diaz K, Alonso-Fernandez F, Bigun J. One-shot learning for periocular recognition: Exploring the effect of domain adaptation and data bias on deep representations. IEEE Access. 2023; 11: 100396-100413. https://doi.org/10.1109/ACCESS.2023.3315234
  19. Zhou X, He J, Yang C. An ensemble learning method based on deep neural network and group decision making. Knowl Based Syst 2022; 239:107801. https://doi.org/10.1016/j.knosys.2021.107801
  20. Derlatka M, Borowska M. Ensemble of heterogeneous base classifiers for human gait recognition. Sensors. 2023; 23(1): 508. https://doi.org/10.3390/s23010508
  21. Mohammed A, Kora R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J King Saud Univ Comput Inf Sci. 2023; 35(2): 757-774. https://doi.org/10.1016/j.jksuci.2023.01.014
  22. Mogan JN, Lee CP, Lim KM, Ali M, Alqahtani A. Gait-CNN-ViT: Multi-model gait recognition with convolutional neural networks and vision transformer. Sensors, 2023; 23(8): 3809. https://doi.org/10.3390/s23083809
  23. Derlatka M, Parfieniuk M. Real-world measurements of ground reaction forces of normal gait of young adults wearing various footwear. Sci Data. 2023; 10(1): 60. https://doi.org/10.1038/s41597-023-01964-z
  24. Saleh AM, Hamoud T. Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation. J Big Data. 2021; 8(1): 1. https://doi.org/10.1186/s40537-020-00387-6
  25. Kingma DP. Adam: A method for stochastic optimization. arXiv preprint. 2014; arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  26. Nakach FZ, Idri A, Zerouaoui H. Deep Hybrid Bagging Ensembles for Classifying Histopathological Breast Cancer Images. Proc - 15th Int Conf Agents Artif Intell – ICAART 2023. 2023;2:289-300. https://doi.org/10.5220/0011704200003393
DOI: https://doi.org/10.2478/ama-2025-0078 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 695 - 700
Submitted on: Aug 13, 2025
Accepted on: Nov 7, 2025
Published on: Dec 19, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marcin DERLATKA, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.