Have a personal or library account? Click to login
The Application of an Ensemble of Convolutional Neural Networks for Human Recognition Based on the Ground Reaction Forces Cover

The Application of an Ensemble of Convolutional Neural Networks for Human Recognition Based on the Ground Reaction Forces

By: Marcin DERLATKA  
Open Access
|Dec 2025

Figures & Tables

Fig. 1.

Components of GRF in: medial/lateral—FML; vertical—FV; anterior/posterior—FAP direction of the left lower limb (blue line) and of the right one (red line) in sport shoes. The graph shows a dozen steps of a woman aged 21 years with a weight of 48.8kg and height of 164.6cm
Components of GRF in: medial/lateral—FML; vertical—FV; anterior/posterior—FAP direction of the left lower limb (blue line) and of the right one (red line) in sport shoes. The graph shows a dozen steps of a woman aged 21 years with a weight of 48.8kg and height of 164.6cm

Fig. 2.

Architecture and signal processing of CNN base classifier
Architecture and signal processing of CNN base classifier

Fig. 3.

Flowchart of the proposed method
Flowchart of the proposed method

Fig. 4.

The average accuracy of the ensemble classifier depends on the number of base classifiers
The average accuracy of the ensemble classifier depends on the number of base classifiers

Mean accuracy of person identification depending on the number of channels and types of signals used

ID of base classifierComponents of GRFs used for learningAccuracy ± SD[%]
1FL_ML89,4314 ± 2.4037
2FL_AP91,8562 ± 2.8214
3FL_V94,3144 ± 1.5766
4FR_ML85,0836 ± 2.7157
5FR_AP90,0502 ± 1.9168
6FR_V88,0936 ± 3.2901
7FL_ML, FR_ML93,1271 ± 1.3641
8FL_AP, FR_AP91,3712 ± 2.8435
9FL_V, FR_V94,6488 ± 1.3025
10FL_AP, FL_V95.4849 ± 2.0797
11FR_AP, FR_V92.6756 ± 2.8579
12FL_ML, FL_AP, FL_V96,2876 ±1.2359
13FR_ML, FR_AP, FR_V94,2642 ±1.1316
14FL_ML, FL_AP, FR_ML, FR_AP95.5686 ±1.2014
15FL_AP, FL_V, FR_AP, FR_V96.2709 ±1.4558
16FL_ML, FL_AP, FR_AP, FR_V96.3378 ±1.2819
17All96,5719 ± 1.1403

Mean accuracy of person identification depending on the base classifiers used

IDID of base classifiersAccuracy ±SD [%]
EC_11+2+3+4+5+698.7793 ± 0.4321
EC_21+2+3+4+5+6+1799.2140 ± 0.2736
EC_37+8+997.8930 ± 0.8162
EC_47+8+9+1798.7625 ± 0.6217
EC_51+2+3+4+5+6+7+8+999.1973 ± 0.3326
EC_61+2+3+4+5+6+7+8+9+1799.4147 ± 0.2398
EC_77+8+9+10+1198.8127 ± 0.5196
EC_87+8+9+10+11+1799.1639 ± 0.3053
EC_912+13+1798.4114 ± 0.6884
EC_101+2+3+4+5+6+7+8+9+10+1199.3645 ± 0.2708
EC_111+2+3+4+5+6+7+8+9+10+11+1799.4482 ± 0.2848
EC_121+2+3+4+5+6+7+8+9+10+11+12+1399.3478 ± 0.2423
EC_131+2+3+4+5+6+7+8+9+10+11+12+13+1799.4314 ± 0.2518
EC_1414+15+1698.1940 ± 0.4303
EC_1514+15+16+1798.7625 ± 0.3629
EC_161+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1699.5317 ± 0.2238
EC_17All base classifiers99.5652 ± 0.2257
EC_182+3+5+7+8+9+10+11+12+13+14+15+ 16+1799.4816 ± 0.2548
EC_1910+12+14+15+16+1799.0635 ± 0.3797

The summary of architecture of convolution neural network

No of layerNo. of Conv BlockType of layerKernel sizeNo of kernelsOutput size
1-Input--1643 x channels
21Conv1D5641639 x 64
4Max Pooling2-819 x 64
52Conv1D3128817x128
7Max Pooling2-408x128
83Conv1D3256406x256
10Max Pooling2-203x256
114Conv1D3512201x512
13Max Pooling2-100x512
145Conv1D3102498x1024
15Max Pooling2 49x1024
16-Flatten--50 176
17-Fully-Connected1-1000 neurons1000
18-Fully-Connected2-700 neurons700
19-Output-322 neurons322
DOI: https://doi.org/10.2478/ama-2025-0078 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 695 - 700
Submitted on: Aug 13, 2025
Accepted on: Nov 7, 2025
Published on: Dec 19, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marcin DERLATKA, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.