Have a personal or library account? Click to login
Advanced Modeling of Uav Dynamics Using Artificial Neural Networks and the Output Error Method Cover

Advanced Modeling of Uav Dynamics Using Artificial Neural Networks and the Output Error Method

Open Access
|Dec 2025

References

  1. Mohsan SAH, Othman NQH, Li Y, Alsharif MH, Khan MA. Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intel Serv Robotics. 2023;16:109–37. https://doi.org/10.1007/s11370-022-00452-4
  2. Reddy Maddikunta PK, Hakak S, Alazab M, Bhattacharya S, Gadekallu TR, Khan WZ et al. Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sensors Journal. 2021;21:17608–19. https://doi.org/10.1109/JSEN.2021.3049471
  3. Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing. 2014;92:79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  4. Dias JN. Flight-Test Determination of Longitudinal Stability Using System Identification. Journal of Aircraft. American Institute of Aeronautics and Astronautics; 2023;60:1659–74. https://doi.org/10.2514/1.C037252
  5. Pamadi BN. Performance, Stability, Dynamics, and Control of Airplanes, Third Edition [Internet]. Reston, VA: American Institute of Aeronautics and Astronautics Inc.; 2015. https://doi.org/10.2514/4.102745
  6. Cook MV. Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. Butterworth-Heinemann; 2012.
  7. Simmons BM. System Identification of a Nonlinear Flight Dynamics Model for a Small, Fixed-Wing UAV [Internet]. Virginia Tech; 2018. http://hdl.handle.net/10919/95324. Accessed 5 Aug 2024
  8. Jategaonkar RV. Flight Vehicle System Identification: A Time-Domain Methodology, Second Edition [Internet]. Reston, VA: American Institute of Aeronautics and Astronautics Inc.; 2015. https://doi.org/10.2514/4.102790
  9. Dorobantu A, Murch A, Mettler B, Balas G. System Identification for Small, Low-Cost, Fixed-Wing Unmanned Aircraft. Journal of Aircraft. 2013;50:1117–30. https://doi.org/10.2514/1.C032065
  10. Simmons BM, Gresham JL, Woolsey CA. Flight-Test System Identification Techniques and Applications for Small, Low-Cost, Fixed-Wing Aircraft. Journal of Aircraft. 2023;60:1503–21. https://doi.org/10.2514/1.C037260
  11. Morelli E. Efficient Global Aerodynamic Modeling from Flight Data. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition [Internet]. Nashville, Tennessee: American Institute of Aeronautics and Astronautics; 2012. https://doi.org/10.2514/6.2012-1050
  12. Simmons BM, McClelland HG, Woolsey CA. Nonlinear Model Identification Methodology for Small, Fixed-Wing, Unmanned Aircraft. Journal of Aircraft. 2019;56:1056–67. https://doi.org/10.2514/1.C035160
  13. Multiplex. Multiplex Fun cub Manual [Internet]. hitecrcd; 2024. https://hitecrcd.com/files/FunCubManual.pdf.
  14. Fuhrmann L, Biallawons O, Klare J, Panhuber R, Klenke R, Ender J. Micro-Doppler analysis and classification of UAVs at Ka band. 2017 18th International Radar Symposium (IRS) [Internet]. 2017; 1–9. https://doi.org/10.23919/IRS.2017.8008142
  15. Lichota P. Wavelet Transform-Based Aircraft System Identification. Journal of Guidance, Control and Dynamics. 2023;46:350–61. https://doi.org/10.2514/1.G006654
  16. Tangirala AK. Principles of System Identification: Theory and Practice. Boca Raton: CRC Press; 2017. https://doi.org/10.1201/9781315222509
  17. Harris J, Arthurs F, Henrickson JV, Valasek J. Aircraft system identification using artificial neural networks with flight test data. 2016 International Conference on Unmanned Aircraft Systems (ICUAS) [Internet]. 2016; 679–88.https://doi.org/10.1109/ICUAS.2016.7502624
  18. Muliadi J, Kusumoputro B. Neural Network Control System of UAV Altitude Dynamics and Its Comparison with the PID Control System. Journal of Advanced Transportation. 2018;3823201. https://doi.org/10.1155/2018/3823201
  19. Prasad V, Bequette BW. Nonlinear system identification and model reduction using artificial neural networks. Computers & Chemical Engineering. 2003;27:1741–54. https://doi.org/10.1016/S0098-1354(03)00137-6
  20. Ertugrul E, Koyuncu E. Neural Network-based UAV System Identification from Sparse Flight Test Data. AIAA SCITECH 2023 Forum [Internet]. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2023-1344
  21. Gu W, Valavanis KP, Rutherford MJ, Rizzo A. UAV Model-based Flight Control with Artificial Neural Networks: A Survey. J Intell Robot Syst. 2020;100:1469–91. https://doi.org/10.1007/s10846-020-01227-8
  22. Bagherzadeh SA. Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode decomposition. Aerospace Science and Technology. 2018;75:155–71. https://doi.org/10.1016/j.ast.2018.01.004
  23. Multiplex Fun Cub model [Internet]. https://shop.multiplex-rc.de/en/rr-funcub-ng-blue-p4212/
  24. Kownacki C. Self-Adaptive Asymmetrical Artificial Potential Field Approach Dedicated to the Problem of Position Tracking by Nonholonomic UAVs in Windy Enivroments. Acta Mechanica et Automatica. 2021;15:37–46. https://doi.org/10.2478/ama-2021-0006
  25. XFLR5 - Browse Files at SourceForge.net [Internet]. https://source-forge.net/projects/xflr5/files/
  26. Septiyana A, Hidayat K, Rizaldi A, Ramadiansyah ML, Ramadhan RA, Suseno PAP, et al. Analysis of aerodynamic characteristics using the vortex lattice method on twin tail boom unmanned aircraft. Tangerang Selatan Indonesia. 2020;020003. https://doi.org/10.1063/5.0002337
  27. Correa AA, Pere G, Tort-Martorell X. Experimentation order with good properties for 2 k factorial designs. Journal of Applied Statistics. Taylor & Francis; 2009;36:743–54. https://doi.org/10.1080/02664760802499337
  28. Obias KCU, Say MFQ, Fernandez EAV, Chua AY, Sybingco E. A Study of the Interaction of Proportional-Integral-Derivative (PID) Control in a Quadcopter Unmanned Aerial Vehicle (UAV) Using Design of Experiment. 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) [Internet]. 2019;1–4. https://doi.org/10.1109/HNICEM48295.2019.9072806
  29. Jimenez P, Lichota P, Agudelo D, Rogowski K. Experimental Validation of Total Energy Control System for UAVs. Energies. 2019;13:14. https://doi.org/10.3390/en13010014
  30. Deiler C. Aerodynamic Modeling, System Identification, and Analysis of Iced Aircraft Configurations. Journal of Aircraft. 2018;55:145–61. https://doi.org/10.2514/1.C034390
  31. Seren C, Bommier F, Verdier L, Bucharles A, Alazard D. Optimal Experiment and Input Design for Flight Test Protocol Optimization. AIAA Atmospheric Flight Mechanics Conference and Exhibit [Internet]. Keystone. Colorado: American Institute of Aeronautics and Astronautics; 2006. https://doi.org/10.2514/6.2006-6280
  32. Lichota P. Multi-Axis Inputs for Identification of a Reconfigurable Fixed-Wing UAV. Aerospace. 2020;7:113. https://doi.org/10.3390/aerospace7080113
  33. Roeser MS, Fezans N. Method for designing multi-input system identification signals using a compact time-frequency representation. CEAS Aeronaut J. 2021;12:291–306. https://doi.org/10.1007/s13272-021-00499-6
  34. Fezans N, Deiler C, Roeser MS. Generation of a Dataset for System Identification with VIRTTAC-Castor; 2019. https://elib.dlr.de/129105/
  35. Marchand M. Untersuchung der Bestimmbarkeit der flugmechanischen Derivative des CCV-Versuchsträgers F-104 G. Brunswick. Germany: DFVLR. 1977.
  36. The Cube User Manual V1.0. CubePilot [Internet]; 2022. https://docs.cubepilot.org/user-guides/autopilot/the-cube-user-manual
  37. Flight Modes-Plane documentation [Internet]. https://ardupilot.org/plane/docs/flight-modes.html
  38. Poy YH, Zarnack M, Henkenjohann M, Nolte U. Aerodynamic Derivatives Identification of a Fixed-Wing UAV using Flight Data. AIAA SCITECH 2024 Forum [Internet]. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2024-0248
  39. Jimenez-Soler P, Lichota P. Mitigating Sensor Quality Issues in UAV System Identification Through Wavelet Decomposition. Bulletin of the Polish Academy of Sciences Technical Sciences; 2024. https://doi.org/10.24425/bpasts.2024.152216
  40. Gresham JL, Simmons BM, Fahmi J-MW, Woolsey CA. Remote Uncorrelated Pilot Inputs for Nonlinear Aerodynamic Model Identification from Flight Data. AIAA AVIATION 2021 FORUM [Internet]. American Institute of Aeronautics and Astronautics; 2021. https://doi.org/10.2514/6.2021-2792
  41. Real-Time System Identification Using Deep Learning for Linear Processes With Application to Unmanned Aerial Vehicles | IEEE Journals & Magazine | IEEE Xplore [Internet]. https://ieeexplore.ieee.org/abstract/document/9130679.
  42. Lichota P. Unstable tilt-rotor maximum likelihood wavelet-based identification from flight test data. AEAT. 2023;95:1275–85. https://doi.org/10.1108/AEAT-01-2023-0013
  43. Krogh A. What are artificial neural networks? Nat Biotechnol. Nature Publishing Group. 2008;26:195–7. https://doi.org/10.1038/nbt1386
  44. Walczak S. Artificial Neural Networks. Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction [Internet]. lGl Global; 2019;40–53. https://doi.org/10.4018/978-1-5225-7368-5.ch004
  45. Sun G, Wang S. A review of the artificial neural network surrogate modeling in aerodynamic design. Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering. IMECHE. 2019;233:5863–72. https://doi.org/10.1177/0954410019864485
  46. Liang Y, Li G, Xu M, Zhao J, Hao F, Shi H. An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver. Defence Technology. 2024;32:663–74. https://doi.org/10.1016/j.dt.2023.07.012
  47. Halitim AM, Bouhedda M, Tchoketch-Kebir S, Rebouh S. Artificial neural network for tilt compensation in yaw estimation. Transactions of the Institute of Measurement and Control. SAGE Publications Ltd STM. 2024;46:2087–96. https://doi.org/10.1177/01423312231214832
DOI: https://doi.org/10.2478/ama-2025-0076 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 673 - 682
Submitted on: Mar 28, 2025
Accepted on: Nov 27, 2025
Published on: Dec 19, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Pedro JIMENEZ-SOLER, Piotr LICHOTA, Piotr FELISIAK, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.