References
- Campbell MF, Celenza TJ, Schmitt F, Schwede JW, Bargatin I. Progress Toward High Power Output in Thermionic Energy Converters. Advanced Science. 2021; 8: 2003812. https://doi.org/10.1002/advs.202003812
- Hao M, Xiao G, Qiu H. Experimental characteristics of thermionic energy converters employing barium-dispenser cathode and semiconductor anodes. Energy. 2025; 325: 136132. https://doi.org/10.1016/j.energy.2025.136132
- Wanke R, Voesch W, Rastegar I, Kyriazis A, Braun W, Mannhart J. Thermoelectronic energy conversion: Concepts and materials. MRS Bulletin. 2017; 42: 518-524. https://doi.org/10.1557/mrs.2017.140
- Lim IT, Lambert SA, Vay JL, Schwede JW. Electron reflection in thermionic energy converters. Applied Physics Letters. 2018;112: 073906. https://doi.org/10.1063/1.5018067
- Bellucci A, Girolami M, Trucchi DM. Chapter 10 - thermionic and thermoelectric energy conversion, in: Datas A (Ed.) Ultra-High Temperature Thermal Energy Storage. Transfer and Conversion. Woodhead Publishing. 2021;253-284. Woodhead Publishing Series in Energy. https://doi.org/10.1016/B978-0-12-819955-8.00010-7
- Hu C, Liang T, Chen X, Su S, Chen J. Graphene-anode thermionic converter demonstrating total photon reflection. Applied Physics Letters 2021; 118: 083901. https://doi.org/10.1063/5.0039113
- Bellucci A, García-Linares P, Martí A, Daniele Maria Trucchi DM, Datas A. A Three-Terminal Hybrid Thermionic-Photovoltaic Energy Converter. Applied Physics Letters. 2021; 118: 083901. https://doi.org/10.1002/aenm.202200357
- Qiu H, Lin S, Haoran Xu H, Hao G, Xiao G. Experimental and theoretical study on hybrid thermionic-photovoltaic energy converters with graphene/semiconductor Schottky junction. Energy Conversion and Management. 2023; 276: 116584. https://doi.org/10.1016/j.enconman.2022.116584
- Zhang X, Ye Z, Su S, Chen J. Thermionic-Thermoradiative Converters. IEEE Electron Device Letters. 2018; 39 (9): 1429-1432. https://doi.org/10.1109/LED.2018.2859797
- Practical Aspects of Modern Dispenser Cathodes, tb-134, https://www.cathode.com/pdf/tb-134.pdf
- Vaughn J, Dudley K, Lesensky L. The deactivation of impregnated type cathodes due to metal vapors. Vacuum. 1961; 11: 77-79. https://doi.org/10.1016/0042-207X(61)90011-2
- Hatsopoulos G N, Gyftopoulos E P. Thermionic Energy Conversion. Cambridge MA: MIT Press. 1973; 1.
- Sikora J. Thermionic electron emission sources: biasing conditions. Lublin: Lublin University of Technology Publishing House; 2019. [in Polish]. https://hdl.handle.net/20.500.14629/487
- Lee J-H, Bargatin I, Melosh N A, Howe R T. Optimal emitter-collector gap for thermionic energy converters. Applied Physics Letters. 2012; 100: 173904.https://doi.org/10.1063/1.4707379
- Badshah S, Atif M, Ul Haq I, Abdullah Malik S, Badshah M, Jan S. Thermal Analysis of Vacuum Resistance Furnace. Processes. 2019;7:907.https://doi.org/10.3390/pr7120907
- Howell JR, Mengüç MP, Siegel R. Thermal Radiation Heat Transfer. 7th ed. Boca Raton: CRC Press; 2021. https://doi.org/10.1201/9781439894552
- ANSYS Inc. ANSYS Fluent Tutorial Guide. Chapter: Radiation Heat Transfer Models. Canonsburg (PA): ANSYS Inc.; 2023.
- Büschgens D, Schubert C, Pfeifer H, Radiation modelling of arbitrary two-dimensional surfaces using the surface-to-surface approach extended with a blocking algorithm. Heat and Mass Transfer. 2021; 57:1577–1590. https://doi.org/10.1007/s00231-022-03203-4
- Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer. 8th ed. Hoboken: Wiley; 2017. ISBN: 978-1-119-32042-5.
- Mekky AB. Computational modelling for specific heat and thermal conductivity of austenitic stainless steels alloys at solid phase. Revue des Composites et des Matériaux Avancés. 2020;30(1):25–33. https://doi.org/10.18280/rcma.300104
- ASM International. ASM Ready Reference: Thermal Properties of Metals and Alloys. ASM International. Materials Park. OH. USA. 2002. ISBN: 978-0-87170-768-0.
- Terada Y, Ohkubo K, Mohri T, Suzuki T. Thermal Conductivity of Intermetallic Compounds with Metallic Bonding. Materials Transactions. 2002; 43 (12): 3167–3176.https://doi.org/10.2320/matertrans.43.3167
- Zhang A, Li Y. Thermal Conductivity of Aluminum Alloys - A Review. Materials. 2023;16(8): 2972. https://doi.org/10.3390/ma16082972
- Goodfellow Cambridge Ltd., Molybdenum Sputtering Target – Product No. MO00-ST-000200 (Mo 99.9 %) – Technical Data Sheet. Goodfellow Cambridge Ltd. Maldon UK. 2025. https://www.goodfellow.com/global/molybdenum-sputtering-target-group
- Frolec J, Králík T. An overview of the thermal radiative properties of metallic materials. Proceedings of the 15th IIR International Conference Cryogenics. Prague Czech Rep. 2019;8-11. https://doi.org/10.18462/iir.cryo.2019.0028
- Baragiola RA, Ferron J, Vidal F. Operation and oxidation of thermionic dispenser cathodes studied by high-resolution photoemission. Journal of Vacuum Science & Technology A. 1998; 16(5); 2309–2316. https://doi.org/10.1116/1.581345
- Forman R et al. Surface studies of thermionic cathodes and the mechanism of operation. NASA Technical Report. NASA TM X-73532; 1976.https://ntrs.nasa.gov/api/citations/19760024327/down-loads/19760024327.pdf
- Huffman FN et al. High efficiency thermionic converter studies. NASA Technical Report. NASA CR-135183; 1977. https://ntrs.nasa.gov/api/citations/19770006877/down-loads/19770006877.pdf
- Gao JY, Yang Y, Zhang XK, Li SL, Hu P, Wang JS. A review on recent progress of thermionic cathode. 2020;182: 109735. https://doi.org/10.1007/s42864-020-00059-1