Have a personal or library account? Click to login
An Observation on the Elzaki Transform and the Fractional Coupled System of PDEs Cover

An Observation on the Elzaki Transform and the Fractional Coupled System of PDEs

Open Access
|Sep 2025

References

  1. Podlubny I. Fractional differential equations. Academic Press. San Diego; 1999.
  2. Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract.Calculus. Appl. Anal. 2002;5:367-386.
  3. He J. Nonlinear oscillation with fractional derivative and its applications, International Conference on VibratingEngineering. Dalian. China. 1998;288-291.
  4. He J. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999; 15:86-90.
  5. He J. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Meth-ods. Appl. Mech. Eng. 1998;167:57-68.
  6. Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional lorenz system. Phys. Rev. Lett. 2003; 91:034101.
  7. Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics. Springer-Verlag,New York. 1997;291-348.
  8. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Elsevier,San Diego; 2006.
  9. Momani S, Shawagfeh NT. Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 2006; 182:1083-1092.
  10. Momani S, Noor MA. Numerical methods for fourth-order fractional integrodifferential equations, Appl. Math. Comput, 2006;182:754-760.
  11. Gejji VD, Jafari H. Solving a multi-order fractional differential equation. Appl. Math. Comput, 2007;189:541-548.
  12. Ray SS, Chaudhuri KS, Bera RK. Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decomposition method. Appl. Math. Comput, 2006;182:544-552.
  13. Wang Q. Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method. Appl. Math. Comput, 2006; 182:1048-1055.
  14. Iskakova K, Alam MM, Ahmad A, Saifullah S, Akgül A, Yılmaz G. Dynamical study of a novel 4D hyperchaotic system: An integer and fractional order analysis. Mathematics and Computers in Simulation. 2023;208: 219-245.
  15. Alqahtani RT, Ahmad S, Akgül A. Dynamical Analysis of Bio-Ethanol Production Model under Generalized Nonlocal Operator in Caputo Sense. Mathematics. 2021; 9(19):2370. https://doi.org/10.3390/math9192370
  16. Ahmad S, Ullah A, Akgül A, Jarad F. A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations [J]. AIMS Mathematics, 2022; 7(5): 9389-9404. https://doi.org/10.3934/math.2022521
  17. Alqahtani RT, Ahmad S, Akgül A. Mathematical Analysis of Biodegradation Model under Nonlocal Operator in Caputo Sense. Mathematics. 2021; 9(21):2787. https://doi.org/10.3390/math9212787
  18. Ahmad S, Saifullah S. Analysis of the seventh-order Caputo fractional KdV equation: applications to the Sawada–Kotera–Ito and Lax equations, Commun. Theor. Phys. 2023; 75(8): 085002. https://doi.org/10.1088/1572-9494/acded7
  19. Hilal EMA, Elzaki TM. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method. Journal of Function Spaces. 2014;1-5. http://dx.doi.org/10.1155/2014/790714
  20. Elzaki TM, Biazar J. Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations. World Applied Sciences Journal; 2013. https://doi.org/10.5829/idosi.wasj.2013.24.07.1041
  21. Elzaki TM. Application of Projected Differential Transform Method on Nonlinear Partial Differential Equations with Proportional Delay in One Variable. World Applied Sciences Journal; 2014. https://doi.org/10.5829/idosi.wasj.2014.30.03.1841
  22. Masood S, Khan HH, Shah R, Mustafa S, Khan Q, Arif M, Tchier F, Singh G. A New Modified Technique of Adomian Decomposition Method for Fractional Diffusion Equations with Initial-Boundary Conditions. Journal of Function Spaces. 2022; 6890517. https://doi.org/10.1155/2022/6890517
  23. Ige OE, Oderinu RA, Elzaki TM. Numerical Simulation Of The Nonlinear Coupled Jaulent-Miodek Equation By Elzaki Transform-Adomian Polynomial Method. Advances in Mathematics: Scientific Journal. 2020;9(12): 10335–10355. https://doi.org/10.37418/amsj.9.12.25
  24. Ige OE, Oderinu RA, Elzaki TM. Adomian Polynomial And Elzaki Transform Method For Solving Klein Gordon Equations. International Journal of Applied Mathematics. 2019; 32(3): 451-468. http://dx.doi.org/10.12732/ijam.v32i3.7
  25. Alderremy AA, Elzaki TM, Chamekh M. Modified Adomian Decomposition Method to Solve Generalized Emden–Fowler Systems for Singular IVP. Hindawi. Mathematical Problems in Engineering. 2019; 6097095. https://doi.org/10.1155/2019/6097095
  26. Elzaki TM, Ishag AA. Modified Laplace Transform and Ordinary Differential Equations with Variable Coefficients. World Engineering & Applied Sciences Journal. 2019; 10 (3): 79-84. https://doi.org/10.5829/idosi.weasj.2019.79.84
  27. Elzaki TM, Chamekh M, Ahmed SA. Modified Integral Transform for Solving Benney-Luke and Singular Pseudo-Hyperbolic Equations. Acta Mechanica et Automatica. 2024;18(1). https://doi.org/10.2478/ama-(2024)-0018
  28. Ahmed SA, Saade R, Qazza A, Elzaki TM. Applying Conformable Double Sumudu–Elzaki Approach to Solve Nonlinear Fractional Problems. Progr. Fract. Differ. Appl. 2024;10(2): 271-286. http://dx.doi.org/10.18576/pfda/100208
  29. Elzaki TM, Mohamed MZ. A Novel Analytical Method For The Exact Solution Of The Fractional-Order Biological Population Model. Acta Mechanica et Automatica. 2024; 18(3):564-570. https://doi.org/10.2478/ama-2024-0059
  30. Chamekh M, Latrach MA, Elzaki TM. Novel Integral Transform Treating Some Ψs-Fractional Derivative Equations. Acta Mechanica et Automatica. 2024; 18 (3). https://doi.org/10.2478/ama-2024-0060
  31. Elzaki TM, Ahmed SA. Novel approach for solving fractional partial differential equations using conformable Elzaki Transform. J. Umm Al-Qura Univ. Appll. Sci. 2024. https://doi.org/10.1007/s43994-024- 00188-0
  32. Magzoub M, Elzaki TM, Chamekh M. An innovative method for solving linear and nonlinear fractional telegraph equations. Advances in Differential Equations and Control Processes. 2024; 31(4): 651-671. https://doi.org/10.17654/0974324324033
DOI: https://doi.org/10.2478/ama-2025-0060 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 518 - 524
Submitted on: Feb 4, 2025
|
Accepted on: Jun 16, 2025
|
Published on: Sep 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mohammed E. A. RABIE, Tarig M. ELZAKI, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.