Have a personal or library account? Click to login
Effect of the End Coil Shape of the Helical Compression Spring on Its Stiffness and Distribution of Transverse Reactions During Axial Loading Cover

Effect of the End Coil Shape of the Helical Compression Spring on Its Stiffness and Distribution of Transverse Reactions During Axial Loading

Open Access
|Sep 2025

References

  1. Wahl AM. Mechanical Springs. Penton Publishing Company; 1944. Available from: http://hdl.handle.net/2027/uc1.$b76475
  2. Goodarzi A, Khajepour A. Vehicle Suspension System Technology and Design. Morgan & Claypool Publisher; 2017. Available from: https://link.springer.com/book/10.1007/978-3-031-01494-9
  3. Okamoto I. Railway Technology Today 5. Japan Railway and Transport. 1998;18. Available from: https://www.ejrcf.or.jp/jrtr/jrtr18/pdf/f52_technology.pdf
  4. Lee CM, Goverdovskiy VN. A multi-stage high-speed railroad vibration isolation system with ‘negative' stiffness. Journal of Sound and Vibration. 2012;331(4): 914–921. Available from: https://doi.org/10.1016/j.jsv.2011.09.014
  5. Cieplok G, Wójcik K. Conditions for self-synchronization of inertial vibrators of vibratory conveyors in general motion. Journal of Theoretical and Applied Mechanics. 2020;58(2): 513–524. Available from: https://doi.org/10.15632/jtam-pl/119023.
  6. Yu ZW, Xu XL. Failure Analysis on Diesel-Engine Valve Springs. J. Fail. Anal. and Preven. 2009;9: 329–334. Available from: https://doi.org/10.1007/s11668-009-9247-9
  7. Vazquez-Gonzalez B., Silva-Navarro G. Evaluation of the Autoparametric Pendulum Vibration Absorber for a Duffing System. Shock and Vibration. 2008;15(3–4): 355–368. Available from: https://doi.org/10.1155/2008/827129
  8. Cimolai G, Dayyani I, Qin Q. Multi-objective shape optimization of large strain 3D helical structures for mechanical metamaterials. Materials & Design. 2022;215. Available from:https://doi.org/10.1016/j.matdes.2022.110444
  9. Bobade RS, Yadav SK. Lateral Forces in the Helical Compression Spring. International Journal for Research in Applied Science & Engineering Technology. 2017;5(12): 2589-2593. Available from: https://www.researchgate.net/publication/342782816_Lateral_Forces_in_the_Helical_Compression_Spring
  10. Arslan E, Genel K. Failure analysis of automotive helical spring. Engineering Failure Analysis. 2023;153. Available from: https://doi.org/10.1016/j.engfailanal.2023.107569
  11. Liu L et al. Failure analysis and finite element assessment of a torsional spring. Engineering Failure Analysis. 2023;146. Available from: https://doi.org/10.1016/j.engfailanal.2023.107096
  12. Yetgin A et al. Failure analysis of a helical compression spring with relatively low spring index. Engineering Failure Analysis. 2024;165. Available from: https://doi.org/10.1016/j.engfailanal.2024.108798
  13. Zhou C et al. An Investigation of Abnormal Vibration – Induced Coil Spring Failure in Metro Vehicles. Engineering Failure Analysis. 2020;108. Available from: https://doi.org/10.1016/j.engfailanal.2019.104238
  14. Kumbhalkar MA, Bhope DV, Vanalkar AV, Chaoji PP. Failure Analysis of Primary Suspension Spring of Rail Road Vehicle, J Fail. Anal. and Preven. 2018;18: 1447–1460. Available from: https://doi.org/10.1007/s11668-018-0542-1
  15. Baran R, Michalczyk K, Warzecha M. Experimental analysis of transverse stiffness distribution of helical compression springs, Acta Mechanica et Automatica. 2023;17(1):95-103. Available from: https://doi.org/10.2478/ama-2023-0011
  16. Dragoni E, Strozzi A. Measuring the load eccentricity in helical compression springs. Strain. 1989;25(3):89-94. Available from: https://doi.org/10.1111/j.1475-1305.1989.tb00699.x
  17. Polish Committee for Standardization. Railway applications - suspension components - helical suspension springs, steel, EN 13298:2003. PKN; 2003.
  18. Branowski B. Sprężyny metalowe. Wydawnictwo Naukowe PWN; 1997.
  19. Grajnert J et al. Izolacja drgań w maszynach i pojazdach. Oficyna Wydawnicza Politechniki Wrocławskiej; 1995: 62-67.
  20. Libermann K. Optimierung von Schraubendruckfedern. Seminar Kaltgeformte Federn - Vortrag 10. Technische Akademie Esslingen. Ostfildern-Nellingen; 2006. Available from: https://www.db-thueringen.de/servlets/MCRFile-NodeServlet/dbt_derivate_00010614/TAE2006_L.pdf
  21. Michalczyk K, Warzecha M, Baran R. A new method for generating virtual models of nonlinear helical springs based on a rigorous mathematical model. Applied Computer Science. 2023;19(2): 96–111. Available from: https://doi.org/10.35784/acs-2023-17
  22. Meissner M, Schrocht HJ. Metallfedern. Grundlagen, Werkstoffe, Berechnung, Gestaltung und Rechnereinsatz. Springer Berlin Heidelberg; 2007. Available from: https://link.springer.com/book/10.1007/978- 3-642-39123-1
  23. Dragoni E. Counting the coils in cylindrical helical compression springs: A clarification note. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2024;239(7):1399-1404. Available from: https://doi.org/10.1177/14644207241290958
  24. Liu H, Kim D. Effects of end Coils on the Natural Frequency of Automotive Engine Valve Springs. International Journal of Automotive Technology. 2009;10(4): 413–420. Available from: https://doi.org/10.1007/s12239-009-0047-8
  25. Polish Committee for Standardization. Cylindrical helical springs made from round wire and bar - calculation and design - part 1: compression springs. EN 13906-1:2013(E). PKN; 2013.
  26. Polish Committee for Standardization. Technical product documentation - springs - part 2: Presentation of data for cylindrical helical compression springs. ISO 2162-2:1993(E). PKN; 1993.
  27. Michalczyk K, Sikora W. Analysis of the influence of parameters of elastomeric layer in shock-absorbing holder of helical spring on its dynamic and static properties. [in:] Awrejcewicz J et al. Engineering dynamics and life sciences. DSTA. 2017: 355-364. Available from: https://doi.org/10.34658/9788393531240
  28. Yıldırım V. Exact Determination of the Global Tip Deflection of both Close-Coiled and Open-Coiled Cylindrical Helical Compression Springs having Arbitrary Doubly-Symmetric Cross-Sections. Interna-tional Journal of Mechanical Sciences. 2016;115–116: 280–298. Available from: https://doi.org/10.1016/j.ijmecsci.2016.06.022
  29. Vogt RF. Number of active coils in helical springs. Transactions of the American Society of Mechanical Engineers. 1934;56(4): 467-476. Available from: https://cybra.lodz.pl/Content/6327/RP_56_4.pdf
  30. Paredes M. Enhanced Formulae for Determining Both Free Length and Rate of Cylindrical Compression Springs. Journal of Mechanical Design. 2016;138(2). Available from: https://doi.org/10.1115/1.4032094
  31. Huang Z, Xiao F, Zhu R, Rao Ch, Huang M, Zhao Z, Yin H. Formula of Cylindrical Spring Stiffness for Nonlinear Large Deformation and Its FEM Verification. Wiley Advances in Mathematical Physics. 2024. Available from: https://doi.org/10.1155/2024/3763892
  32. Krużelecki J, Życzkowski M. On the concept of an equivalent column in the stability problem of compressed helical springs. Ingenieur - Archiv. 1990;60: 367-377. Available from: https://doi.org/10.1007/BF00542566
  33. Kato H, Suzuki H. Nonlinear deflection analysis of helical spring in elastic– perfect plastic material: Application to the plastic extension of piano wire spring. Mechanics of Materials. 2021;160. Available from: https://doi.org/10.1016/j.mechmat.2021.103971
  34. Pijper RJM, Slot HM. Friction coefficient for steel to steel contact surfaces in air and seawater. Journal of Physics: Conference Series. 2020;1669. Available from: https://doi:10.1088/1742-6596/1669/1/012002
  35. Javadi M, Tajdari M. Experimental investigation of the friction coefficient between aluminium and steel. Materials Science-Poland. 2006;24(2/1). Available from: https://www.researchgate.net/publication/252733277_Experimental_investigation_of_the_friction_coefficient_between_aluminium_and_steel
  36. Fatchurrohman N, Chia ST. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach. IOP Conf. Series: Materials Science and Engineering. 2017;257. Available from: https://doi.org/10.1088/1757-899X/257/1/012060
  37. Özgün. Ansys Mesh Metrics Explained. Mechead – engineering, analysis, design; 2023. Available from: https://www.mechead.com/mesh-quality-checking-ansys-workbench/
DOI: https://doi.org/10.2478/ama-2025-0055 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 471 - 484
Submitted on: Feb 10, 2025
Accepted on: Aug 13, 2025
Published on: Sep 30, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Robert BARAN, Krzysztof MICHALCZYK, Mariusz WARZECHA, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.