Have a personal or library account? Click to login
Mechano-Responsive Polyampholyte Hydrogels with Strain-Stiffening Property for Wound Closure Applications Cover

Mechano-Responsive Polyampholyte Hydrogels with Strain-Stiffening Property for Wound Closure Applications

Open Access
|Sep 2025

References

  1. Chen J, Peng Q, Peng X, Han L, Wang X, Wang J, et al. Recent advances in mechano-responsive hydrogels for biomedical applications. ACS Appl Polym Mater. 2020;2(3):1092–107.
  2. Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli‐responsive nanocomposite hydrogels for biomedical applications. Adv Funct Mater. 2021;31(8):1–30.
  3. Mascharak S, Griffin M, Chen K, Duoto B, Chinta M. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science (80- ). 2021;372(6540):356.13-358.
  4. Lin X, Bai Y, Zhou H, Yang L. Mechano-active biomaterials for tissue repair and regeneration. J Mater Sci Technol (Internet]. 2020;59(June):227-33. Available from: https://doi.org/10.1016/j.jmst.2020.03.074
  5. Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol (Internet]. 2017;18(12): 758-70. Available from: http://dx.doi.org/10.1038/nrm.2017.87
  6. Armiger TJ, Lampi MC, Reinhart-King CA, Dahl KN. Determining mechanical features of modulated epithelial monolayers using subnuclear particle tracking. J Cell Sci. 2018;131(12):3–8.
  7. Guilak F, Butler DL, Goldstein SA, Baaijens FP. Biomechanics and mechanobiology in functional tissue engineering. 2015;47(9):1933–40.
  8. Wong VW, Akaishi S, Longaker MT, Gurtner GC. Pushing back: Wound mechanotransduction in repair and regeneration. J Invest Dermatol. 2011;131(11):2186–96.
  9. Barnes LA, Marshall CD, Leavitt T, Hu MS, Moore AL, Gonzalez JG, et al. Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation. Adv Wound Care. 2018;7(2): 47–56.
  10. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 2007;21(12):3250–61.
  11. Zhang J, Keith AN, Sheiko SS, Wang X, Wang Z. To mimic mechanical properties of the skin by inducing oriented nanofiber microstructures in bottlebrush cellulose-graft-diblock copolymer elastomers. ACS Appl Mater Interfaces. 2021;13(2):3278–86.
  12. Zhang W, Wu B, Sun S, Wu P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat Commun [Internet]. 2021;12(1). Available from: http://dx.doi.org/10.1038/s41467-021-24382-4
  13. Wang X-Y, Zhang J, Dong Y-B, Zhang Y, Yin J, Liu SH. Different structures modulated mechanochromism and aggregation-induced emission in a series of Gold (I) complexes [Internet]. Vol. 156, Dyes and Pigments. Elsevier Ltd; 2018. 74–81 hal. Available from: https://doi.org/10.1016/j.dyepig.2018.03.062
  14. Norton AE, Abdolmaleki MK, Liang J, Sharma M, Golsby R, Zoller A, et al. Phase transformation induced mechanochromism in a platinum salt: a tale of two polymorphs. Chem Commun. 2020;56(70):10175–8.
  15. Uman S, Dhand A, Burdick JA. Recent advances in shear‐thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci. 2020;137(25):1–20.
  16. Zandi N, Sani ES, Mostafavi E, Ibrahim DM, Saleh B, Shokrgozar MA, et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials [Internet]. 2021;267:120476. Available from: https://doi.org/10.1016/j.biomaterials.2020.120476
  17. Seppala JE, Heo Y, Stutzman PE, Sieber JR, Snyder CR, Rice KD, et al. Characterization of clay composite ballistic witness materials. Time-, temperature-, and history-dependent properties. J Mater Sci. 2015;50(21):7048–57.
  18. Ramos JRD, Travasso R, Carvalho J. Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity. Phys Rev E. 2018;97(1):1–11.
  19. Van Oosten ASG, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep. 2016;6(December 2015):1–9.
  20. Op't Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design considerations for hydrogel wound dressings: strategic and molecular advances. Tissue Eng - Part B Rev. 2020;26(3):230–48.
  21. Op't Veld RC, Joosten L, van den Boomen OI, Boerman OC, Kouwer P, Middelkoop E, et al. Monitoring 111 In-labelled polyisocyanopeptide (PIC) hydrogel wound dressings in full-thickness wounds. Biomater Sci. 2019;7(7):3041–50.
  22. op‘t Veld RC, van den Boomen OI, Lundvig DMS, Bronkhorst EM, Kouwer PHJ, Jansen JA, et al. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials [Internet]. 2018;181:392–401. Available from: https://doi.org/10.1016/j.biomaterials.2018.07.038
  23. Keith AN, Vatankhah-Varnosfaderani M, Clair C, Fahimipour F, Dashtimoghadam E, Lallam A, et al. Bottlebrush bridge between soft gels and firm tissues. ACS Cent Sci. 2020;6(3):413–9.
  24. Jhong JF, Venault A, Liu L, Zheng J, Chen SH, Higuchi A, et al. Introducing mixed-charge copolymers as wound dressing biomaterials. ACS Appl Mater Interfaces. 2014;6(12):9858–70.
  25. Gustini, Lin WC. Characterizations of the strain-stiffening property and cytotoxicity in the self-assembled polyampholyte hydrogel. J Mech Sci Technol. 2022;36(5):2653–61.
  26. Wang Y, Xu Z, Lovrak M, le Sage VAA, Zhang K, Guo X, et al. Biomimetic strain‐stiffening self‐assembled hydrogels. Angew Chemie - Int Ed. 2020;59(12):4830–4.
  27. Riahi R, Yang Y, Zhang DD, Wong PK. Advances in wound-healing assays for probing collective cell migration. J Lab Autom. 2012;17(1):59–65.
  28. Ji Y, Yang X, Ji Z, Zhu L, Ma N, Chen D, et al. DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS omega. 2020;5(15):8572-8.
  29. Ghimire H, Venkataramani M, Bian Z, Liu Y, Perera AGU. ATR-FTIR spectral discrimination between normal and tumorous mouse models of lymphoma and melanoma from serum samples. Sci Rep [Internet]. 2017;7(1):1–9. Available from: http://dx.doi.org/10.1038/s41598-017- 17027-4
  30. Stapelfeldt K, Stamboroski S, Walter I, Suter N, Kowalik T, Michaelis M et al. Controlling the multiscale structure of nanofibrous fibrinogen scaffolds for wound healing. Nano Lett. 2019;19(9): 6554–63.
  31. Das RK, Gocheva V, Hammink R, Zouani OF, Rowan AE. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat Mater. 2016;15(3):318–25.
DOI: https://doi.org/10.2478/ama-2025-0051 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 441 - 446
Submitted on: Oct 2, 2024
Accepted on: Jun 16, 2025
Published on: Sep 30, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Gustini GUSTINI, Kaprawi SAHIM, Ida SRIYANTI, Irmawan IRMAWAN, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.