Have a personal or library account? Click to login
Developing a Predictive Wear Model for Intelligent Tool Change Systems Cover

Developing a Predictive Wear Model for Intelligent Tool Change Systems

Open Access
|Sep 2025

References

  1. Grzesik W, Żak K, Zawada-Tomkiewicz A. Analiza i modelowanie powierzchni wytwarzanych w obróbce ubytkowej. PWN Warszawa. 2024; 1–331.
  2. ISO 3685:1993 Tool-life testing with single-point turning tools.
  3. Abeni A, Metelli A, Attanasio A, Outeiro J, Poulachon G. A Predictive Method for Cumulative Tool Wear in Variable Cutting Speed Turning Operations. Procedia CIRP. 2025;133:454-459.
  4. Zhang X, Peng Z, Liu L, Zhang X. A Tool Life Prediction Model Based on Taylor’s Equation for High-Speed Ultrasonic Vibration Cutting Ti and Ni Alloys. Coatings. 2022;12(10):1553.
  5. Cheng Y, Gai X, Guan R, Jin Y, Lu M, Ding Y. Tool wear intelligent monitoring techniques in cutting: a review. Journal of Mechanical Science and Technology. 2023;37(1):289-303.
  6. Wang K, Wang A, Wu L, Xie G. Machine Tool Wear Prediction Technology Based on Multi-Sensor Information Fusion. Sensors. 2024;24: 2652.
  7. Zhou Y, Liu C, Yu X, Liu B, Quan Y. Tool wear mechanism, monitoring and remaining useful life (RUL) technology based on big data: A review. SN Applied Sciences. 2022;4:232.
  8. Ünal P, Deveci BU, Özbayoğlu AM. A review: Sensors used in tool wear monitoring and prediction. In: Awan I, Younas M, Poniszewska-Marańda A. (Eds.) Mobile Web and Intelligent Information Systems. MobiWIS. 2022. Lecture Notes in Computer Science. 2022;13475.
  9. Zhang C, Wang W, Li H. Tool wear prediction method based on symmetrized dot pattern and multi-covariance Gaussian process regression. Measurement. 2022;189:110466.
  10. Bombiński S, Kossakowska J, Jemielniak K. Detection of accelerated tool wear in turning. Mechanical Systems and Signal Processing. 2022;162:108021.
  11. Zhang X, Gao Y, Guo Z, Zhang W, Yin J, Zhao W. Physical model-based tool wear and breakage monitoring in milling process. Mechanical Systems and Signal Processing. 2023;184:109641.
  12. Sayyad S, Kumar S, Bongale A, Kotecha K, Abraham A. Remaining useful-life prediction of the milling cutting tool using time-frequency-based features and deep learning models. Sensors. 2023;23:5659.
  13. Gupta MK, Niesłony P, Sarikaya M, Korkmaz ME, Kuntoğlu M, Kró- lczyk GM. Studies on geometrical features of tool wear and other important machining characteristics in sustainable turning of aluminium alloys. International Journal of Precision Engineering and Manufacturing-Green Technology. 2023;10:943–957.
  14. Soori M, Arezoo B, Dastres R. Machine learning and artificial intelligence in CNC machine tools: A review. Sustainable Manufacturing and Service Economics. 2023;100009.
  15. Zawada-Tomkiewicz A, Tomkiewicz D. Monitoring System with a Vision Smart Sensor. In: Majewski M, Kacalak W. (eds) Innovations Induced by Research in Technical Systems. IIRTS 2019. Lecture Notes in Mechanical Engineering. 2020.
  16. Cheng M, Jiao L, Yan P, Jiang H, Wang R, Qiu T, Wang X. Intelligent tool wear monitoring and multi-step prediction based on deep learning model. Journal of Manufacturing Systems. 2022;62:286–300.
  17. https://www.alicona.com/en/technologies/focus-variation.
DOI: https://doi.org/10.2478/ama-2025-0047 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 398 - 405
Submitted on: Dec 9, 2024
Accepted on: Jul 10, 2025
Published on: Sep 5, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Anna ZAWADA-TOMKIEWICZ, Łukasz GĄSIEWICZ, Jarosław STRELKE, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.