Have a personal or library account? Click to login
Influence of Commercial Additives and y-Irradiation on Structural and Mechanical Properties of rHDPE/rGFRP Cover

Influence of Commercial Additives and y-Irradiation on Structural and Mechanical Properties of rHDPE/rGFRP

Open Access
|Sep 2025

References

  1. ICT Fibers. Available online: https://ictfibers.com/(accessed on 202411-05).
  2. Spychala MJ, Latko-Durałek P, Miedzińska D, Sałasińska K, Cetnar I, Popławski A, Boczkowska A. Structural and mechanical properties of recycled HDPE with milled GFRP as a filler. Materials. 2022; 15: 5302. https://doi.org/10.3390/ma15155302
  3. Spychała MJ, Miedzińska D. Potencjalne kierunki wdrożenia nowego materiału kompozytowego z recyklatów HDPE i LPS. Projektowanie, Budowa i Eksploatacja Maszyn – cz. III. 2024.
  4. Rahayu Y, Wahyu S. Physical Behaviour of Wood Plastic Composite Made of Recycled High-Density Polyethylene (HDPE). Jurnal Kehutanan Papuasia. 2023;9: 229–237. https://doi.org/10.46703
  5. Dorra H, Khlif M, Tounsi F, Bradai C. Effect of Maleic Anhydride–Grafted Polypropylene Coupling Agent on Mechanical Properties of HDPE Composites Filled with Grape Leaves Fiber. Biomass Conversion and Biorefinery. 2024;14(14):15251–1563. https://doi.org/10.1007/s13399-023-03963-x
  6. Long Y, Shanks RA. The use of additives in the processing of biodegradable polyesters. Journal of Applied Polymer Science. 1996;61:1877.
  7. Misra RKD, Nerikar P, Bertrand K, Murphy D. Nanocrystalline filler induced changes in electrical and stability properties of a polymer nanocomposite electrolyte based on amorphous matrix. Journal of Materials Science. 2004;384:284.
  8. Li Q, Matuana LM. Effectiveness of maleated and acrylic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites. Journal of Thermoplastic Composite Materials. 2003;16(6): 551–564. https://doi.org/10.1177/089270503033340
  9. Abad MJ, Ares A, Barral-Losada LF, Ramirez CR. Effects of a mixture of stabilizers on the structure and mechanical properties of polyethylene during reprocessing. Journal of Applied Polymers Science. 2004;92(6). https://doi.org/10.1002/app.20420
  10. Delli E, Gkiliopoulos D, Vouvoudi E, Bikiaris D, Chrissafis K. Defining the Effect of a Polymeric Compatibilizer on the Properties of Random Polypropylene/Glass Fibre Composites. Journal of Composites Science. 2024 ; 8:44. https://doi.org/10.3390/jcs8020044
  11. Wu Y, Song Y, Wu D, Mao X, Yang X, Jiang S, Zhang C, Guo R. Recent Progress in Modifications, Properties, and Practical Applications of Glass Fiber. Molecules. 2023;28:2466. https://doi.org/10.3390/molecules28062466
  12. Vachon J, Assad-Alkhateb D, de Araujo Hsia L, Lora JH, Baumberger S. Effect of compatibilizers on polyethylene-eucalyptus lignin blends. Journal of Applied Polymers Science. 2023;140:e53695. https://doi.org/10.1002/app.53695
  13. Ghosh A. Performance modifying techniques for recycled thermoplastics. Resources, Conservation and Recycling. 2021;175. https://doi.org/10.1016/j.resconrec.2021.105887
  14. Tselios C, Bikiaris D, Savidis P, Panayiotou C, Larena AJ. Glass-fiber reinforcement of in situ compatibilized polypropylene/polyethylene blends. Journal of Material Science. 1999;34:385–394. https://doi.org/10.1023/A:1004434412273
  15. Noranizan IA, Ahmad I. Effect of fiber loading and compatibilizer on rheological, mechanical, and morphological behaviors. Open Journal of Polymer Chemistry. 2012;2(2). https://doi.org/10.4236/ojp-chem.2012.22005
  16. Zheng A, Wang H, Zhu X, Masuda S. Studies on the interface of glass fiber-reinforced polypropylene composite. Composite Interfaces. 2002;9:319–333. https://doi.org/10.1163/156855402760194683
  17. Watanabe R, Sugahara A, Hagihara H, Mizukado J, Shinzawa H. Insight into interfacial compatibilization of glass-fiber-reinforced polypropylene (PP) using maleic-anhydride modified PP employing infrared spectroscopic imaging. Composites Science and Technology. 2020;199. https://doi.org/10.1016/j.compcitech.2020.108379
  18. Wündrich K. A review of radiation resistance for plastic and elastomeric materials. Physics, Materials Science. 1985;24:503–510.
  19. Kokta BV, Raj RG, Daneault C. Use of wood flour as filler in polypropylene: studies on mechanical properties. Polymer Plastic Technology and Engineering. 1989;28(3).
  20. Raj RG, Kokta BV, Maldas D, Daneault C. Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene-wood fiber composites. Journal of Applied Polymer Science 1989;37(4).
  21. Kuan HC, Huang JM, Ma CCM, Wang FY. Processability, morphology, and mechanical properties of wood-reinforced high-density polyethylene composites. Plastics Rubber and Composites. 2003;32.
  22. Bengtsson M, Gatenholm P, Oksman K. The effect of crosslinking on the properties of polyethylene/wood flour composites. Compos Science Technology 2005;65(10):1468–79.
  23. Liu NC, Yao GP, Huang H. Influences of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes. Polymers. 2000;41.
  24. Singh A. Irradiation of polyethylene: Some aspects of crosslinking and oxidative degradation. Radiation Physics and Chemistry. 1999;56:375–380.
  25. Polymer-Additives. https://polymer-additives.specialchem.com/product/a-basf-irgacycle-ps-032-g
  26. Mengeloglu F, Karakus K. Thermal degradation, mechanical properties, and morphology of wheat straw flour-filled recycled thermoplastic composites. Sensors. 2008;8:500–519. https://doi.org/10.3390/s8010500
  27. Polymer-Additives. https://polymer-additives.specialchem.com/product/a-silma-silmalink-pro-453
  28. PN-EN ISO 527-2. Plastics. Determination of Tensile Properties. Part 2: Test Conditions for Moulding and Extrusion Plastics. Polski Komitet Normalizacyjny: Warsaw. Poland; 2012.
  29. ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASM International: Novelty OH USA; 2014.
  30. Wojnar L, Kurzydłowski KJ, Szala J. Praktyka Analizy Obrazu. Polskie Towarzystwo Stereologiczne; 2002.
  31. Ross CK, Klassen NV, Shortt KR, Smith GD. A Direct Comparison of Water Calorimetry and Fricke Dosimetry. Physics in Medicine & Biology. 1989;34. https://doi.org/10.1088/0031-9155/34/1/003
  32. Klassen NV, Shortt KR, Seuntjens J, Ross CK. Fricke dosimetry: The difference between G(Fe3+) for Co-60 gamma-rays and high-energy x-rays. Physics in Medicine & Biology. 1999;44:1609–1624. https://doi.org/10.1088/0031-9155/44/7/303
  33. Cota SS, Vasconcelos V, Senne Jr M, Carvalho LL, Rezende DB, Côrrea RF. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE). Brazilian Journal of Chemical Engineering. 2007;24:259–265. https://doi.org/10.1590/S0104-66322007000200010
  34. Hejna A, Barczewski M., Kosmela P., Ani´sko J., Mysiukiewicz, O., Mar´c M. Mandarin peel as an auspicious functional filler for polymer composites. Macedonian Journal of Chemistry and Chemical Engineering. 2021;40: 89-106.
  35. da Silva GdA, d’Almeida JRM. Mechanical properties and morphology of HDPE/PA12 blends compatibilized with HDPE-alt-MAH. Polymers and Polymer Composites. 2022;30:1–13. https://doi.org/10.1177/09673911211064049
  36. Yu S, Hwang YH, Lee KT, Kim SO, Hwang JY, Hong SH. Outstanding strengthening and toughening behavior of 3D-printed fiber-reinforced composites designed by biomimetic interfacial heterogeneity. Advanced Science. 2022;9, 2103561. https://10.1002/advs.202103561.
  37. Fazli A, Stevanovic T, Rodrigue D. Recycled HDPE/Natural Fiber Composites Modified with Waste Tire Rubber: A Comparison between Injection and Compression Molding. Polymers. 2022;14(15):3197. https://doi.org/10.3390/polym14153197
  38. EL-Zayat MM, Abdel-Hakim A, Maysa AM. Effect of gamma radiation on the physico mechanical properties of recycled HDPE/modified sugarcane bagasse composite. Journal of Macromolecular Science. 2019, Part A. https://doi.org/10.1080/10601325.2018.1549949
  39. Shershneva IN, Shershnev VA, Bubnova ML, Lesnichaya VA, Kolesnikova AM, Rabinskiy LN, Kydralieva KA, Dzhardimalieva GI. Fiber-Matrix-Coupling Agent Interactions in Glass-Fiber-Reinforced Polyethylene Composites Under Gamma Irradiation. Mechanics of Composite Materials. 2019;55. https://doi.org/10.1007/s11029-019-09836-7
  40. Valadez-Gonzalez A, Cervantes-Uc JM, Veleva L. Mineral filler influence on the photo-oxidation of high density polyethylene: I. Accelerated UV chamber exposure test. Polymer Degradation and Stability.1999;63(2):253–260. https://doi.org/10.1016/S01413910(98)00102-5
  41. Hassan A, Abd. Rahman N, Yahya R. Extrusion and injection-molding of glass fiber/MAPP/polypropylene: effect of coupling agent on DSC, DMA, and mechanical properties. Journal of Reinforced Plastics and Composites. 2011;30(14):1223–1232. https://doi.org/10.1177/0731684411417916
  42. Kang KS, Lee SI, Lee TJ, Narayan R, Shin BY. Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid). Korean Journal of Chemical Engineering. 2008;25(3):599–608. https://doi.org/10.1007/s11814-008-0101-7
  43. Ahmad H, Rostami-Tapeh-Esmaeil E, Rodrigue D. The effect of chemical crosslinking on the properties of rotomolded high density polyethylene. Applied Polymer Science. 2023; 141(1): e54744. https://doi.org/10.1002/app.54744.46
  44. Wang W, Xiaochao Z, Zongyuan M, Weiquan Z. Effects of Gamma Radiation on the Impact Strength of Polypropylene (PP)/High Density Polyethylene (HDPE) Blends. Results in Physics. 2019;12:2169–2174. https://doi.org/10.1016/j.rinp.2019.02.020
DOI: https://doi.org/10.2478/ama-2025-0042 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 350 - 361
Submitted on: Feb 17, 2025
Accepted on: Jun 6, 2025
Published on: Sep 5, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Maciej Jan SPYCHAŁA, Danuta MIEDZIŃSKA, Grzegorz SŁAWIŃSKI, Dorota GAJDA, Paulina LATKO-DURAŁEK, Anna CZAJKA-WAROWNA, Tomasz SZREDER, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.