References
- Hosseini HS, Taher HRD, Akhavan H, Omidi M. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model. 2010;34(5):1276-91. Available from: https://doi.org/10.1016/j.apm.2009.08.008
- Reddy JN. Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 2000;47:663-84.
- Zenkour AM. Bending analysis of functionally graded sandwich plates using a simple four unknown shear and normal deformations theory. J. Sandw. Struct. Mater. 2013;15:629-56. Available from: https://doi.org/10.1177/1099636213498886
- Reddy JN. A general nonlinear third-order theory of functionally graded plates. Int. J. Aerosp. Lightweight Struct. 2011;1:1-21. Available from: https://doi.org/10.3850/S201042861100002X
- Talha M, Singh BN. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 2010;34:3991-4011. Available from: https://doi.org/10.1016/j.apm.2010.03.034
- Zenkour AM. Generalized shear deformation theory for bending analysis of functionally graded materials. Appl. Math. Model. 2006;30(1):67-84. Available from: https://doi.org/10.1016/j.apm.2005.03.009
- Yaghoobi H, Fereidoon A. Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory. Compos. B: Eng. 2014;62:54-64. Available from: https://doi.org/10.1016/j.com-positesb.2014.02.014
- Sobhy M, Al-Mukahal FH. Magnetic control of vibrational behavior of smart FG sandwich plates with honeycomb core via a quasi 3D plate theory. Adv. Eng. Mater. 2023;25(13):2300096. Available from: https://doi.org/10.1002/adem.202300096
- Zarga D, Tounsi A, Bousahla AA, Bourada F, Mahmoud SR. Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel Compos. Struct. 2019;32(3):389-410. Available from: https://doi.org/10.12989/scs.2019.32.3.389
- Alibeigloo A, Alizadeh M. Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method. Eur. J. Mech. A/Solids. 2015;54:252-66. Available from: https://doi.org/10.1016/j.euromechsol.2015.06.011
- Natarajan S, Manickam G. Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 2012;57:32-42. Available from: https://doi.org/10.1016/j.finel.2012.03.006
- Li Q, Iu VP, Kou KP. Three-dimensional vibration analysis of functionally graded material sandwich plates. J. Sound Vib. 2008;311:498– 515. Available from: https://doi.org/10.1016/j.jsv.2007.09.018
- Liu N, Jeffers AE. Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos. Struct. 2017;176(15):143-53. Available from: https://doi.org/10.1016/j.compstruct.2017.05.037
- Neves A, Ferreira A, Carrera E, Cinefra M, Roque C, Jorge R, Soares CM. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. B: Eng. 2013;44:657-74. Available from: https://doi.org/10.1016/j.compositesb.2012.01.089
- Wang Y, Tham L, Cheung Y. Beams and plates on elastic foundations: a review. Prog Struct Eng Mat. 2005;7:174–82. Available from: https://doi.org/10.1002/pse.202
- Winkler E. Die Lehre von der Elastizität und Festigkeit (The Theory of Elasticity and Stiffness), H. Dominicus, Prague, Czechoslovakia. 1867.
- Kolahchi R, Safari M, Esmailpour M. Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium, Compos. Struct. 2016;150:255–65. Available from: https://doi.org/10.1016/j.compstruct.2016.05.023
- Pasternak P. On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow. 1954.
- Kneifati MC. Analysis of plates on a Kerr foundation model. J. Eng. Mech. 1985;111:1325–42.
- Mohamed M, Samir B, Abdelkader M, Abdelouahed T, Abdelmoumen AB, Mahmoud SR. Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions. J. Sandw. Struct. Mater. 2021;23(3):1028-57. Available from: https://doi.org/10.1177/1099636219851281
- Guerroudj HZ, Yeghnem R, Kaci A, Zaoui FZ, Benyoucef S. Eigenfre-quencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory. Smart Struct. Syst. 2018;22(1):121-32. Available from: https://doi.org/10.12989/sss.2018.22.1.121
- Lazreg H, Mehmet A, Nafissa Z. Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation. Mater. Today: Proc. 2022;53(1):153-60. Available from: https://doi.org/10.1016/j.matpr.2021.12.485
- Kurpa L, Shmatko T, Linnik A. Buckling Analysis of Functionally Graded Sandwich Plates Resting on an Elastic Foundation and Subjected to a Nonuniform Loading. Mech. Compos. Mater. 2023;59:645-58. Available from: https://doi.org/10.1007/s11029-023-10122-w
- Pham VV, Le QH. Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory. Def. Technol. 2022;18(3):490-508. Available from: https://doi.org/10.1016/j.dt.2021.03.006
- Dang TH, Yang DJ, Liu Y. Improvements in shear locking and spurious zero energy modes using Chebyshev finite element method. J. Comput. Inf. Sci. Eng. 2019;19:011006. Available from: https://doi.org/10.1115/1.4041829
- Ton-That HL, Nguyen-Van H, Chau-Dinh T. A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets. Arch. Appl. Mech. 2021;91:2435-66. Available from: https://doi.org/10.1007/s00419-021-01893-6
- Fornberg B, Zuev J. The Runge Phenomenon and Spatially Variable Shape Parameters in RBF Interpolation. Comput. Math. Appl. 2007;54(3):379–98. Available from: https://doi.org/10.1016/j.camwa.2007.01.028
- Lee SJ. Free Vibration Analysis of Plates by Using a Four-Node Finite Element Formulated With Assumed Natural Transverse Shear Strain. J. Sound Vib. 2004;278(3):657–84. Available from: https://doi.org/10.1016/j.jsv.2003.10.018
- Abassian F, Haswell DJ, Knowles NC. Free Vibration Benchmarks. National Agency for Finite Element Methods and Standards, Glasgow, UK. 1987.
- Shahsavari D, Shahsavari M, Li L, Karami B. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 2018;72:134-49. Available from: https://doi.org/10.1016/j.ast.2017.11.004
- Baferani AH, Saidi A, Ehteshami H. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Compos. Struct. 2011;93(7):1842-53. Available from: https://doi.org/10.1016/j.compstruct.2011.01.020
- Akavci S. Mechanical behaviour of functionally graded sandwich plates on elastic foundation. Compos. B: Eng. 2016;96:136-52. Available from: https://doi.org/10.1016/j.compositesb.2016.04.035