Have a personal or library account? Click to login
Natural Frequencies of Functionally Graded Sandwich Plates Resting on an Elastic Foundation Using Chebyshev Finite Element Method Cover

Natural Frequencies of Functionally Graded Sandwich Plates Resting on an Elastic Foundation Using Chebyshev Finite Element Method

Open Access
|Jun 2025

References

  1. Hosseini HS, Taher HRD, Akhavan H, Omidi M. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model. 2010;34(5):1276-91. Available from: https://doi.org/10.1016/j.apm.2009.08.008
  2. Reddy JN. Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 2000;47:663-84.
  3. Zenkour AM. Bending analysis of functionally graded sandwich plates using a simple four unknown shear and normal deformations theory. J. Sandw. Struct. Mater. 2013;15:629-56. Available from: https://doi.org/10.1177/1099636213498886
  4. Reddy JN. A general nonlinear third-order theory of functionally graded plates. Int. J. Aerosp. Lightweight Struct. 2011;1:1-21. Available from: https://doi.org/10.3850/S201042861100002X
  5. Talha M, Singh BN. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 2010;34:3991-4011. Available from: https://doi.org/10.1016/j.apm.2010.03.034
  6. Zenkour AM. Generalized shear deformation theory for bending analysis of functionally graded materials. Appl. Math. Model. 2006;30(1):67-84. Available from: https://doi.org/10.1016/j.apm.2005.03.009
  7. Yaghoobi H, Fereidoon A. Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory. Compos. B: Eng. 2014;62:54-64. Available from: https://doi.org/10.1016/j.com-positesb.2014.02.014
  8. Sobhy M, Al-Mukahal FH. Magnetic control of vibrational behavior of smart FG sandwich plates with honeycomb core via a quasi 3D plate theory. Adv. Eng. Mater. 2023;25(13):2300096. Available from: https://doi.org/10.1002/adem.202300096
  9. Zarga D, Tounsi A, Bousahla AA, Bourada F, Mahmoud SR. Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel Compos. Struct. 2019;32(3):389-410. Available from: https://doi.org/10.12989/scs.2019.32.3.389
  10. Alibeigloo A, Alizadeh M. Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method. Eur. J. Mech. A/Solids. 2015;54:252-66. Available from: https://doi.org/10.1016/j.euromechsol.2015.06.011
  11. Natarajan S, Manickam G. Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 2012;57:32-42. Available from: https://doi.org/10.1016/j.finel.2012.03.006
  12. Li Q, Iu VP, Kou KP. Three-dimensional vibration analysis of functionally graded material sandwich plates. J. Sound Vib. 2008;311:498– 515. Available from: https://doi.org/10.1016/j.jsv.2007.09.018
  13. Liu N, Jeffers AE. Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos. Struct. 2017;176(15):143-53. Available from: https://doi.org/10.1016/j.compstruct.2017.05.037
  14. Neves A, Ferreira A, Carrera E, Cinefra M, Roque C, Jorge R, Soares CM. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. B: Eng. 2013;44:657-74. Available from: https://doi.org/10.1016/j.compositesb.2012.01.089
  15. Wang Y, Tham L, Cheung Y. Beams and plates on elastic foundations: a review. Prog Struct Eng Mat. 2005;7:174–82. Available from: https://doi.org/10.1002/pse.202
  16. Winkler E. Die Lehre von der Elastizität und Festigkeit (The Theory of Elasticity and Stiffness), H. Dominicus, Prague, Czechoslovakia. 1867.
  17. Kolahchi R, Safari M, Esmailpour M. Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium, Compos. Struct. 2016;150:255–65. Available from: https://doi.org/10.1016/j.compstruct.2016.05.023
  18. Pasternak P. On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow. 1954.
  19. Kneifati MC. Analysis of plates on a Kerr foundation model. J. Eng. Mech. 1985;111:1325–42.
  20. Mohamed M, Samir B, Abdelkader M, Abdelouahed T, Abdelmoumen AB, Mahmoud SR. Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions. J. Sandw. Struct. Mater. 2021;23(3):1028-57. Available from: https://doi.org/10.1177/1099636219851281
  21. Guerroudj HZ, Yeghnem R, Kaci A, Zaoui FZ, Benyoucef S. Eigenfre-quencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory. Smart Struct. Syst. 2018;22(1):121-32. Available from: https://doi.org/10.12989/sss.2018.22.1.121
  22. Lazreg H, Mehmet A, Nafissa Z. Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation. Mater. Today: Proc. 2022;53(1):153-60. Available from: https://doi.org/10.1016/j.matpr.2021.12.485
  23. Kurpa L, Shmatko T, Linnik A. Buckling Analysis of Functionally Graded Sandwich Plates Resting on an Elastic Foundation and Subjected to a Nonuniform Loading. Mech. Compos. Mater. 2023;59:645-58. Available from: https://doi.org/10.1007/s11029-023-10122-w
  24. Pham VV, Le QH. Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory. Def. Technol. 2022;18(3):490-508. Available from: https://doi.org/10.1016/j.dt.2021.03.006
  25. Dang TH, Yang DJ, Liu Y. Improvements in shear locking and spurious zero energy modes using Chebyshev finite element method. J. Comput. Inf. Sci. Eng. 2019;19:011006. Available from: https://doi.org/10.1115/1.4041829
  26. Ton-That HL, Nguyen-Van H, Chau-Dinh T. A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets. Arch. Appl. Mech. 2021;91:2435-66. Available from: https://doi.org/10.1007/s00419-021-01893-6
  27. Fornberg B, Zuev J. The Runge Phenomenon and Spatially Variable Shape Parameters in RBF Interpolation. Comput. Math. Appl. 2007;54(3):379–98. Available from: https://doi.org/10.1016/j.camwa.2007.01.028
  28. Lee SJ. Free Vibration Analysis of Plates by Using a Four-Node Finite Element Formulated With Assumed Natural Transverse Shear Strain. J. Sound Vib. 2004;278(3):657–84. Available from: https://doi.org/10.1016/j.jsv.2003.10.018
  29. Abassian F, Haswell DJ, Knowles NC. Free Vibration Benchmarks. National Agency for Finite Element Methods and Standards, Glasgow, UK. 1987.
  30. Shahsavari D, Shahsavari M, Li L, Karami B. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 2018;72:134-49. Available from: https://doi.org/10.1016/j.ast.2017.11.004
  31. Baferani AH, Saidi A, Ehteshami H. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Compos. Struct. 2011;93(7):1842-53. Available from: https://doi.org/10.1016/j.compstruct.2011.01.020
  32. Akavci S. Mechanical behaviour of functionally graded sandwich plates on elastic foundation. Compos. B: Eng. 2016;96:136-52. Available from: https://doi.org/10.1016/j.compositesb.2016.04.035
DOI: https://doi.org/10.2478/ama-2025-0039 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 318 - 326
Submitted on: Jan 21, 2025
Accepted on: May 2, 2025
Published on: Jun 30, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hoang Lan TON-THAT, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.