References
- Ashby M, Bréchet Y. Designing hybrid materials. Acta Materialia. 2003; 51(19): 5801–5821. https://doi.org/10.1016/S1359-6454(03)00441-5
- Zohdi T, Wriggers P. An introduction to computational micromechanics. Berlin Heidelberg: Springer-Verlag; 2005.
- Burczyński T, Pietrzyk M, Kuś W, Madej Ł, Mrozek A, Rauch Ł, Multiscale Modelling and Optimisation of Materials and Structures, Hoboken: Wiley, 2022.
- Ptaszny J, Hatłas M. Evaluation of the FMBEM efficiency in the analysis of porous structures. Engineering Computations. 2018;35(2): 843-866. https://doi.org/10.1108/EC-12-2016-0436
- Ptaszny J. A fast multipole BEM with higher-order elements for 3-D composite materials. Computers & Mathematics with Applications. 2021;82: 148-160. https://doi.org/10.1016/j.camwa.2020.10.024
- Sigmund O. Materials with prescribed constitutive parameters: An inverse homogenization problem, International Journal of Solids and Structures. 1994, 31(17): 2313-2329. https://doi.org/10.1016/0020-7683(94)90154-6
- Trofimov A, Abaimov S, Sevostianov I. Inverse homogenization problem: Evaluation of elastic and electrical (thermal) properties of composite constituents. International Journal of Engineering Science. 2018;129: 34-46. https://doi.org/10.1016/j.ijengsci.2018.04.001
- Hoffman FO, Hammonds JS. Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability. Risk Analysis. 1994;14(5). https://doi.org/10.1111/J.1539-6924.1994.TB00281.X
- Pelz PF, Groche P, Pfetsch ME, Schaeffner M (Eds). Mastering Uncertainty in Mechanical Engineering, Cham: Springer; 2021.
- Araque L, Wang L, Mal A, Schaal C. Advanced fuzzy arithmetic for material characterization of composites using guided ultrasonic waves. Mechanical Systems and Signal Processing. 2022; 171, 108856. https://doi.org/10.1016/j.ymssp.2022.108856
- Yao JT. A ten-year review of granular computing. Proceeding of 2007 IEEE International Conference on Granular Computing, Silicon Valley, USA. 2007; 734-739. https://doi.org/10.1109/GrC.2007.11
- Pedrycz W. Granular computing: analysis and design of intelligent systems. Boca Raton: CRC Press; 2018.
- Ramli AA, Watada J, Pedrycz W. Information Granules Problem: An Efficient Solution of Real-Time Fuzzy Regression Analysis. In: Pedrycz, W., Chen, SM. (eds) Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, vol 8. Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-08254-7_3
- Möller B, Beer M. Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics. Berlin-Heidelberg: Springer-Verlag; 2004.
- Wang L., Qiu Z., Zheng Y. State-of-the-Art Nonprobabilistic Finite Element Analyses. Jan Peter Hessling (ed.), Uncertainty Quantification and Model Calibration, IntechOpen; 2017.
- Moens D, Vandepitte D. A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer Methods in Applied Mechanics and Engineering. 2005; 194: 1527–1555. https://doi.org/10.1016/j.cma.2004.03.019
- Chen N, Yu D, Xia B, Li J, Ma Z. Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters, International Journal of Solids and Structures. 2017; 106–107: 174-182. https://doi.org/10.1016/j.ijsolstr.2016.11.022
- Pivovarov D, Hahn V, Steinmann P, Willner K, Leyendecker S. Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Computational Mechanics. 2019; 64: 1601–1619. https://doi.org/10.1007/s00466-019-01737-9
- Naskar S, Mukhopadhyay T, Sriramula S. Spatially varying fuzzy multiscale uncertainty propagation in unidirectional fibre reinforced composites. Composite Structures. 2019; 209: 940-967. https://doi.org/10.1016/j.compstruct.2018.09.090
- Beluch W, Hatłas M, Ptaszny J, Granular Computational Homogenisation of Composite Structures with Imprecise Parameters, Archives of Mechanics. 2023; 75(3): 271-300. https://doi.org/10.24423/aom.4186
- Yamanaka Y, Matsubara S, Hirayama N, Moriguchi S, Terada K. Surrogate modeling for the homogenization of elastoplastic composites based on RBF interpolation, Computer Methods in Applied Mechanics and Engineering. 2023; 415, 116282. https://doi.org/10.1016/j.cma.2023.116282
- Fuhg JN, Böhm C, Bouklas N, Fau A, Wriggers P, Marino M, Model-data-driven constitutive responses: Application to a multiscale computational framework. International Journal of Engineering Science. 2021; 167, 103522. https://doi.org/10.1016/j.ijengsci.2021.103522
- Rodríguez-Romero R, Compán V, Sáez A, García-Macías E. Hierarchical meta-modelling for fast prediction of the elastic properties of stone injected with CNT/cement mortar. Construction and Building Materials. 2023; 408. https://doi.org/10.1016/j.conbuildmat.2023.133725
- Le BA, Yvonnet J, He QC. Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering. 2015; 104: 1061–1084. https://doi.org/10.1002/nme.4953
- Ogierman W. A data-driven model based on the numerical solution of the equivalent inclusion problem for the analysis of nonlinear shortfibre composites. Composites Science and Technology. 2024; 250, 110516. https://doi.org/10.1016/j.compscitech.2024.110516
- Kaucher E. Interval Analysis in the Extended Interval Space IR. In: Alefeld, G., Grigorieff, R.D. (eds), Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis). Computing Sup-plementum. 1980; 2: 33-49. https://doi.org/10.1007/978-3-7091-8577-3_3
- Markov SM. On direct interval arithmetic and its applications, Journal of Universal Computer Science. 1995; 1(7): 514–526. https://doi.org/10.1007/978-3-642-80350-5_43
- Popova ED. Multiplication distributivity of proper and improper intervals. Reliable Computing. 2001; 7: 129–140. https://doi.org/10.1023/A:1011470131086
- Piasecka-Belkhayat A. Interval boundary element method for imprecisely defined unsteady heat transfer problems (in Polish). Monographs, 321. Gliwice: Publishing House of Silesian University of Technology, 2011.
- Shary SP. Non-Traditional Intervals and Their Use. Which Ones Really Make Sense? Numerical Analysis and Applications. 2023; 16(2): 179-191. https://doi.org/10.1134/S1995423923020088
- Kouznetsova V. Computational homogenization for the multi-scale analysis of multi-phase materials. PhD. thesis, Technische Universiteit Eindhoven; 2002.
- Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis and fundamentals. Butterworth-Heinemann; 2013.
- Brebbia J, Dominguez J. Boundary Elements: An Introductory Course. New York: McGraw-Hill; 1992.
- Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids. 1963; 11: 357– 372. https://doi.org/10.1016/0022-5096(63)90036-X
- Nguyen V, Béchet E, Geuzaine C, Noels L. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Computational Materials Science. 2012;55: 390–406. https://doi.org/10.1016/j.commatsci.2011.10.017
- Botsis J, Deville M. Mechanics of Continuous Media: an Introduction. EPFL Press; 2018.
- Bos L, Gibson P, Kotchetov M, Slawinski M. Classes of Anisotropic Media: A Tutorial. Studia Geophisica et Geodaetica. 2004;48: 265-287. https://doi.org/10.1023/B:SGEG.0000015596.68104.31
- Burczyński T, Kuś W, Beluch W, Długosz A, Poteralski A, Szczepanik M. Intelligent computing in optimal design. Springer International Publishing; 2020.
- Michalewicz Z, Fogel DB., How to Solve It: Modern Heuristics. Berlin, Heidelberg: Springer; 2004.
- Nelson PR, Coffin M, Copeland KAF. Response surface methods, In: Nelson PR, Coffin M, Copeland KAF (eds) Introductory Statistics for Engineering Experimentation. Academic Press, 395–423, 2003.
- Montgomery D. Design and analysis of experiments. New York: John Wiley & Sons; 2012.
- Halmos PR. Naive set theory. New York: Springer-Verlag; 1974.
- Jaulin L, Kieffer M, Didrit O, Water E. Applied interval analysis, London: Springer; 2001.
- Hayes B. A lucid interval. American Scientist, 2003;91(6): 484–488.
- Burczyński T., Kuś W. Optimization of structures using distributed and parallel evolutionary algorithms, Parallel Processing and Applied Mathematics, Lecture Notes on Computational Sciences 3019, Springer, 572-579, 2004.
- Długosz A. Optimization in multiscale thermoelastic problems, Computer Methods in Materials Science, 2014;14(1): 86-93. https://doi.org/10.7494/cmms.2014.1.0478
- Deb K. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons; 2001.
- Długosz, A. Multiobjective Evolutionary Optimization of MEMS Structures, Computer Assisted Mechanics and Engineering Sciences, 2010;17(1): 41-50.
- Zitzler, E., Brockhoff, D., Thiele, L. The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2007; 4403: 862—876. https://doi.org/10.1007/978-3-540-70928-2_64
- Rothwell, A. Optimization Methods in Structural Design. Springer International Publishing; 2017.