Have a personal or library account? Click to login
Metamodel-Based Inverse Design of a Composite Material with Prescribed Interval Effective Elastic Properties Cover

Metamodel-Based Inverse Design of a Composite Material with Prescribed Interval Effective Elastic Properties

Open Access
|Jun 2025

References

  1. Ashby M, Bréchet Y. Designing hybrid materials. Acta Materialia. 2003; 51(19): 5801–5821. https://doi.org/10.1016/S1359-6454(03)00441-5
  2. Zohdi T, Wriggers P. An introduction to computational micromechanics. Berlin Heidelberg: Springer-Verlag; 2005.
  3. Burczyński T, Pietrzyk M, Kuś W, Madej Ł, Mrozek A, Rauch Ł, Multiscale Modelling and Optimisation of Materials and Structures, Hoboken: Wiley, 2022.
  4. Ptaszny J, Hatłas M. Evaluation of the FMBEM efficiency in the analysis of porous structures. Engineering Computations. 2018;35(2): 843-866. https://doi.org/10.1108/EC-12-2016-0436
  5. Ptaszny J. A fast multipole BEM with higher-order elements for 3-D composite materials. Computers & Mathematics with Applications. 2021;82: 148-160. https://doi.org/10.1016/j.camwa.2020.10.024
  6. Sigmund O. Materials with prescribed constitutive parameters: An inverse homogenization problem, International Journal of Solids and Structures. 1994, 31(17): 2313-2329. https://doi.org/10.1016/0020-7683(94)90154-6
  7. Trofimov A, Abaimov S, Sevostianov I. Inverse homogenization problem: Evaluation of elastic and electrical (thermal) properties of composite constituents. International Journal of Engineering Science. 2018;129: 34-46. https://doi.org/10.1016/j.ijengsci.2018.04.001
  8. Hoffman FO, Hammonds JS. Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability. Risk Analysis. 1994;14(5). https://doi.org/10.1111/J.1539-6924.1994.TB00281.X
  9. Pelz PF, Groche P, Pfetsch ME, Schaeffner M (Eds). Mastering Uncertainty in Mechanical Engineering, Cham: Springer; 2021.
  10. Araque L, Wang L, Mal A, Schaal C. Advanced fuzzy arithmetic for material characterization of composites using guided ultrasonic waves. Mechanical Systems and Signal Processing. 2022; 171, 108856. https://doi.org/10.1016/j.ymssp.2022.108856
  11. Yao JT. A ten-year review of granular computing. Proceeding of 2007 IEEE International Conference on Granular Computing, Silicon Valley, USA. 2007; 734-739. https://doi.org/10.1109/GrC.2007.11
  12. Pedrycz W. Granular computing: analysis and design of intelligent systems. Boca Raton: CRC Press; 2018.
  13. Ramli AA, Watada J, Pedrycz W. Information Granules Problem: An Efficient Solution of Real-Time Fuzzy Regression Analysis. In: Pedrycz, W., Chen, SM. (eds) Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, vol 8. Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-08254-7_3
  14. Möller B, Beer M. Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics. Berlin-Heidelberg: Springer-Verlag; 2004.
  15. Wang L., Qiu Z., Zheng Y. State-of-the-Art Nonprobabilistic Finite Element Analyses. Jan Peter Hessling (ed.), Uncertainty Quantification and Model Calibration, IntechOpen; 2017.
  16. Moens D, Vandepitte D. A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer Methods in Applied Mechanics and Engineering. 2005; 194: 1527–1555. https://doi.org/10.1016/j.cma.2004.03.019
  17. Chen N, Yu D, Xia B, Li J, Ma Z. Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters, International Journal of Solids and Structures. 2017; 106–107: 174-182. https://doi.org/10.1016/j.ijsolstr.2016.11.022
  18. Pivovarov D, Hahn V, Steinmann P, Willner K, Leyendecker S. Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Computational Mechanics. 2019; 64: 1601–1619. https://doi.org/10.1007/s00466-019-01737-9
  19. Naskar S, Mukhopadhyay T, Sriramula S. Spatially varying fuzzy multiscale uncertainty propagation in unidirectional fibre reinforced composites. Composite Structures. 2019; 209: 940-967. https://doi.org/10.1016/j.compstruct.2018.09.090
  20. Beluch W, Hatłas M, Ptaszny J, Granular Computational Homogenisation of Composite Structures with Imprecise Parameters, Archives of Mechanics. 2023; 75(3): 271-300. https://doi.org/10.24423/aom.4186
  21. Yamanaka Y, Matsubara S, Hirayama N, Moriguchi S, Terada K. Surrogate modeling for the homogenization of elastoplastic composites based on RBF interpolation, Computer Methods in Applied Mechanics and Engineering. 2023; 415, 116282. https://doi.org/10.1016/j.cma.2023.116282
  22. Fuhg JN, Böhm C, Bouklas N, Fau A, Wriggers P, Marino M, Model-data-driven constitutive responses: Application to a multiscale computational framework. International Journal of Engineering Science. 2021; 167, 103522. https://doi.org/10.1016/j.ijengsci.2021.103522
  23. Rodríguez-Romero R, Compán V, Sáez A, García-Macías E. Hierarchical meta-modelling for fast prediction of the elastic properties of stone injected with CNT/cement mortar. Construction and Building Materials. 2023; 408. https://doi.org/10.1016/j.conbuildmat.2023.133725
  24. Le BA, Yvonnet J, He QC. Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering. 2015; 104: 1061–1084. https://doi.org/10.1002/nme.4953
  25. Ogierman W. A data-driven model based on the numerical solution of the equivalent inclusion problem for the analysis of nonlinear shortfibre composites. Composites Science and Technology. 2024; 250, 110516. https://doi.org/10.1016/j.compscitech.2024.110516
  26. Kaucher E. Interval Analysis in the Extended Interval Space IR. In: Alefeld, G., Grigorieff, R.D. (eds), Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis). Computing Sup-plementum. 1980; 2: 33-49. https://doi.org/10.1007/978-3-7091-8577-3_3
  27. Markov SM. On direct interval arithmetic and its applications, Journal of Universal Computer Science. 1995; 1(7): 514–526. https://doi.org/10.1007/978-3-642-80350-5_43
  28. Popova ED. Multiplication distributivity of proper and improper intervals. Reliable Computing. 2001; 7: 129–140. https://doi.org/10.1023/A:1011470131086
  29. Piasecka-Belkhayat A. Interval boundary element method for imprecisely defined unsteady heat transfer problems (in Polish). Monographs, 321. Gliwice: Publishing House of Silesian University of Technology, 2011.
  30. Shary SP. Non-Traditional Intervals and Their Use. Which Ones Really Make Sense? Numerical Analysis and Applications. 2023; 16(2): 179-191. https://doi.org/10.1134/S1995423923020088
  31. Kouznetsova V. Computational homogenization for the multi-scale analysis of multi-phase materials. PhD. thesis, Technische Universiteit Eindhoven; 2002.
  32. Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis and fundamentals. Butterworth-Heinemann; 2013.
  33. Brebbia J, Dominguez J. Boundary Elements: An Introductory Course. New York: McGraw-Hill; 1992.
  34. Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids. 1963; 11: 357– 372. https://doi.org/10.1016/0022-5096(63)90036-X
  35. Nguyen V, Béchet E, Geuzaine C, Noels L. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Computational Materials Science. 2012;55: 390–406. https://doi.org/10.1016/j.commatsci.2011.10.017
  36. Botsis J, Deville M. Mechanics of Continuous Media: an Introduction. EPFL Press; 2018.
  37. Bos L, Gibson P, Kotchetov M, Slawinski M. Classes of Anisotropic Media: A Tutorial. Studia Geophisica et Geodaetica. 2004;48: 265-287. https://doi.org/10.1023/B:SGEG.0000015596.68104.31
  38. Burczyński T, Kuś W, Beluch W, Długosz A, Poteralski A, Szczepanik M. Intelligent computing in optimal design. Springer International Publishing; 2020.
  39. Michalewicz Z, Fogel DB., How to Solve It: Modern Heuristics. Berlin, Heidelberg: Springer; 2004.
  40. Nelson PR, Coffin M, Copeland KAF. Response surface methods, In: Nelson PR, Coffin M, Copeland KAF (eds) Introductory Statistics for Engineering Experimentation. Academic Press, 395–423, 2003.
  41. Montgomery D. Design and analysis of experiments. New York: John Wiley & Sons; 2012.
  42. Halmos PR. Naive set theory. New York: Springer-Verlag; 1974.
  43. Jaulin L, Kieffer M, Didrit O, Water E. Applied interval analysis, London: Springer; 2001.
  44. Hayes B. A lucid interval. American Scientist, 2003;91(6): 484–488.
  45. Burczyński T., Kuś W. Optimization of structures using distributed and parallel evolutionary algorithms, Parallel Processing and Applied Mathematics, Lecture Notes on Computational Sciences 3019, Springer, 572-579, 2004.
  46. Długosz A. Optimization in multiscale thermoelastic problems, Computer Methods in Materials Science, 2014;14(1): 86-93. https://doi.org/10.7494/cmms.2014.1.0478
  47. Deb K. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons; 2001.
  48. Długosz, A. Multiobjective Evolutionary Optimization of MEMS Structures, Computer Assisted Mechanics and Engineering Sciences, 2010;17(1): 41-50.
  49. Zitzler, E., Brockhoff, D., Thiele, L. The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2007; 4403: 862—876. https://doi.org/10.1007/978-3-540-70928-2_64
  50. Rothwell, A. Optimization Methods in Structural Design. Springer International Publishing; 2017.
DOI: https://doi.org/10.2478/ama-2025-0033 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 268 - 278
Submitted on: Dec 17, 2024
Accepted on: Apr 14, 2025
Published on: Jun 26, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Witold BELUCH, Jacek PTASZNY, Marcin HATŁAS, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.