Have a personal or library account? Click to login
Metamodel-Based Inverse Design of a Composite Material with Prescribed Interval Effective Elastic Properties Cover

Metamodel-Based Inverse Design of a Composite Material with Prescribed Interval Effective Elastic Properties

Open Access
|Jun 2025

Figures & Tables

Fig. 1.

Granular Computational Inverse Design scheme
Granular Computational Inverse Design scheme

Fig. 2.

The RVE model of the fibre-reinforced composite material: a) unit cell geometry, b) FEM mesh
The RVE model of the fibre-reinforced composite material: a) unit cell geometry, b) FEM mesh

Fig. 3.

Pareto fronts and DPEA results
Pareto fronts and DPEA results

Results of the multi-objective optimisation

RunIHPareto point p¯1=Em[GPa] p¯2=vm[] p¯3=Ef[GPa] p¯4=vf[] p¯5=f[] f1(p¯)[GPa] f2(p¯)[] C¯22(p¯)[GPa] δw, δc [%]
1-0.26058 minf1(p¯) [6.21597, 6.45371][0.32362, 0.32760][149.183, 180.177][0.21958, 0.30889][0.32641, 0.34275]2.9865E-033.9623E-02[15.197072, 16.799410]1.0994E-021.4612E-01
maxf2(p¯) [5.65513, 6.52451][0.30761, 0.32362][377.437, 450.000][0.31219, 0.33490][0.30399, 0.36323]2.4308E+001.4490E-01[13.106417, 18.035232]2.6823E+002.0805E+02
2-0.28839 minf1(p¯) [6.64138, 6.87106][0.36113, 0.36698][71.940, 162.432][0.26203, 0.31893][0.22596, 0.23219]2.9716E-033.1145E-02[15.201644, 16.802470]1.2856E-025.1625E-02
maxf2(p¯) [5.78269, 6.87106][0.32687, 0.34218][334.408, 450.000][0.29318, 0.35000][0.25825, 0.28928]2.2397E+001.5310E-01[13.032410, 17.363930]5.0114E+001.7072E+02
3-0.29693 minf1(p¯) [6.02157, 6.24235][0.30924, 0.32460][313.892, 323.541][0.20476, 0.23224][0.34545, 0.35226]9.1474E-042.4120E-02[15.199641, 16.799159]3.7500E-033.0125E-02
maxf2(p¯) [5.94323, 6.93317][0.30700, 0.32460][357.547, 450.000][0.28208, 0.35000][0.27794, 0.32512]2.3664E+001.6499E-01[13.03876217.763848]3.7418E+001.9532E+02
4-0.28615 minf1(p¯) [5.67805, 5.81318][0.30305, 0.32223][318.653, 450.000][0.21592, 0.30478][0.38134, 0.38597]4.6047E-032.2522E-02[15.201917, 16.795817]7.0812E-033.8125E-01
maxf2(p¯) [5.26435, 6.37166][0.34681, 0.36387][345.252, 450.000][0.31243, 0.35000][0.28161, 0.31635]2.4268E+001.7065E-01[13.389715, 18.416232]6.0642E-012.1416E+02
5-0.27313 minf1(p¯) [5.49730, 5.83237][0.33979, 0.34532][377.152, 450.000][0.20000, 0.24683][0.33794, 0.34838]6.2008E-045.2240E-02[15.200134, 16.799395]1.4719E-034.6188E-02
maxf2(p¯) [5.20406, 6.14267][0.31508, 0.33451][359.835, 450.000][0.30955, 0.33613][0.33212, 0.37497]2.4372E+001.5643E-01[13.098494, 18.034225]2.7103E+002.0848E+02
6-0.30318 minf1(p¯) [6.74116, 7.13123][0.34609, 0.35073][326.580, 388.616][0.22717, 0.31078][0.22181, 0.23521]2.8838E-034.6350E-02[15.201307, 16.802570]1.2116E-027.8937E-02
maxf2(p¯) [6.84060, 8.00000][0.31912, 0.34471][313.585, 450.000][0.28905, 0.35000][0.20547, 0.24324]2.4610E+001.8884E-01[13.588805, 18.660209]7.7817E-012.1696E+02
7-0.29861 minf1(p¯) [6.07599, 6.13976][0.35545, 0.36251][66.934, 103.602][0.23487, 0.27334][0.29319, 0.31667]1.0141E-021.0628E-02[15.204597, 16.790961]1.3881E-028.5225E-01
maxf2(p¯) [6.16085, 7.23273][0.30000, 0.31959][311.748, 381.206][0.24644, 0.27261][0.28919, 0.33169]2.3757E+001.7365E-01[13.514604, 18.474349]3.4522E-022.0998E+02
8-0.28615 minf1(p¯) [7.06127, 7.38220][0.30000, 0.30279][357.869, 392.536][0.28429, 0.32087][0.27701, 0.29914]3.8161E-03-2.796E-02[15.201885, 16.803318]1.6259E-028.9562E-02
maxf2(p¯) [5.11271, 6.11818][0.37069, 0.38602][326.957, 450.000][0.32087, 0.35000][0.24097, 0.27701]2.1827E+001.5331E-01[13.333662, 17.931799]2.2954E+001.8738E+02
9-0.29202 minf1(p¯) [6.98408, 7.14029][0.32483, 0.33341][89.1451, 110.587][0.27858, 0.34763][0.27141, 0.28943]2.6195E-032.6035E-02[15.202586, 16.799585]6.7844E-031.8756E-01
maxf2(p¯) [5.12698, 6.16768][0.36979, 0.38819][293.851450.000][0.30270, 0.33132][0.25029, 0.28474]2.3811E+001.7227E-01[13.529283, 18.496622]8.0953E-022.1046E+02
10-0.29388 minf1(p¯) [6.41585, 6.79624][0.37605, 0.37959][50.000, 71.4883][0.20603, 0.24717][0.21665, 0.22781]2.9710E-033.5399E-02[15.199480, 16.802953]7.6031E-032.1706E-01
maxf2(p¯) [6.41585, 7.39224][0.34290, 0.36104][346.451, 450.000][0.30325, 0.34305][0.22490, 0.25735]2.1655E+001.6221E-01[14.412384, 18.817226]3.8425E+001.7530E+02

Exemplary results of the single-objective optimisation for φ1 = 0_75, φ2=0_25

Rank p¯1=Em[GPa] p¯2=vm[] p¯3=Ef[GPa] p¯4=vf[] p¯5=f[] g1(p¯)[GPa] g2(p¯)[] fg(p¯) C¯22(p¯)[GPa] δv, δc [%]
1[5.29892, 5.54251][0.36931, 0.37214][303.429, 370.799][0.26779, 0.34706][0.29828, 0.31968]7.7079E-042.8280E-02-6.4919E-03[15.200105, 16.800763]2.7100E-034.1120E-02
2[6.58579, 6.84576][0.31106, 0.31661][179.078, 257.930][0.23188, 0.34675][0.31161, 0.32033]1.0045E-024.3329E-02-3.2986E-03[15.195634, 16.790953]4.1916E-022.9256E-01
3[6.02565, 6.17328][0.32825, 0.33579][260.926, 321.946][0.26363, 0.25501][0.33863, 0.31755]4.2133E-032.4606E-02-2.9916E-03[15.202722, 16.803215]1.8553E-023.0813E-02
4[5.75597, 6.09119][0.37103, 0.36848][80.847, 99.605][0.22293, 0.29563][0.29018’0.30173]4.9521E-032.5470E-02-2.6534E-03[15.204895, 16.800749]1.7638E-022.5913E-01
5[5.79374, 6.38056][0.37613, 0.37806][317.142, 421.272][0.33603, 0.34437][0.23377, 0.23645]2.3205E-031.3425E-02-1.6159E-03[15.199783, 16.802310]6.5406E-031.5794E-01
30[7.34717, 7.41631][0.34548, 0.34419][98.303, 450,000][0.28926, 0.29484][0.20000, 0.22936]5.8223E-021.1523E-024.0787E-02[15.194355, 16.857949]1.6345E-013.9746E+00

Polynomial coefficients for C22RS and quality metrics

β02.663E+01
βkβ1 = -8.969E-01; β2 = -1.410E+02; β3 = -3.450E-04; β4 = -3.622E-01; β5 = -4.214E+01
βklβ11 = 6.144E+00; β12 = 5.427E-04; β13 = 1.586E-01; β14 = 4.170E+00; β15 = 6.277E-03; β22 = 2.490E+00; β23 = 5.768E+01; β24 = 4.311E-03; β25 = 1.405E-02; β33 = 3.669E+00; β34 = -1.067E-02; β35 = 2.056E+02; β44 = -1.086E-05; β45 = -8.753E-01; β55 = 3.672E+01
R20.99586
PRESS23.23325
σest0.35107

The best results of the single-objective optimisation for different weighting coefficients

VariantABC
Weighting coefficientsφ1 = 0.25, φ2 = 0.75φ1 = 0.5, φ2 = 0.5φ1 = 0.75, φ2 = 0.25
p¯1=Em[GPa] [6.05064, 6.46002][4.91259, 5.15732][5.29892, 5.54251]
p¯2=vm[] [0.37837, 0.38391][0.34833, 0.35504][0.36931, 0.37214]
p¯3=Ef[GPa] [443.933, 354.949][298.173, 331.484][303.429, 370.799]
p¯4=vf[] [0.30482, 0.31628][0.24757, 0.27883][0.26779, 0.34706]
p¯5=f[] [0.20564, 0.21752][0.37770, 0.38936][0.29828, 0.31968]
g1(p¯)[GPa] 1.0987E-021.6975E-037.7079E-04
g2(p¯)[] 5.5390E-024.0799E-022.8280E-02
fg(p¯) -3.8796E-02-1.9551E-02-6.4919E-03
avg[ fg(p¯) ] -1.6084E-02-5.5497E-031.6779E-02
σ[ fg(p¯) ] 9.9484E-031.1636E-025.7618E-02
C¯22(p¯)[GPa] [15.210668, 16.797376][15.200626, 16.801578][15.200105, 16.800763]
δw [%]2.5140E-026.8900E-032.7100E-03
δc [%]8.3075E-015.9500E-024.1120E-02
DOI: https://doi.org/10.2478/ama-2025-0033 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 268 - 278
Submitted on: Dec 17, 2024
Accepted on: Apr 14, 2025
Published on: Jun 26, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Witold BELUCH, Jacek PTASZNY, Marcin HATŁAS, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.