Have a personal or library account? Click to login
The Impact of the Gas Turbine Blade Heating Temperature in the Presence of Aviation Kerosene on Coating and Alloy Microstructure Cover

The Impact of the Gas Turbine Blade Heating Temperature in the Presence of Aviation Kerosene on Coating and Alloy Microstructure

Open Access
|Mar 2025

References

  1. Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. J. Propuls. Power. 2006; 22: 361–374.
  2. Gudivada G, Pandey AK. Recent developments in nickel-based superalloys for gas turbine applications: review. J Alloy Compd. 2023;963.
  3. Sims CT, Stoloff NS, Hagel WC. Superalloys II-High-Temperature Materials for Aerospace and Industrial Applications. New York (NY): John Wiley & Sons; 1987.
  4. DeMasi-Marcin JT, Gupta DK. Protective coatings in the gas turbine engine. Surf Coat Technol. 1994;68:1–9.
  5. Kadir A, Bég O, Gendy EIM, Bég TAB, Shamshuddin MD. Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades. Heat Transf Asian Res. 2019;48. doi:10.1002/htj.21493
  6. Singh I, Tiwari AC. A revisit to different techniques for gas turbine blade cooling. Mater Today Proc. 2023.
  7. Chowdhury TS, Mohsin FT, Tonni MM, Mita MNH, Ehsan MM. A critical review on gas turbine cooling performance and failure analysis of turbine blades. Int J Thermofluids. 2023;18:100329.
  8. Hetmańczyk M, Swadźba L, Mendala B. Advanced materials and protective coatings in aero-engines application. JAMME. 2007;24:372–81.
  9. Grimme C, Oskay C, Mengis L, Galetz MC. High temperature wear behavior of δ-Ni2Al3 and β-NiAl coatings formed on pure nickel using pack cementation process and diffusion heat treatment. Wear. 2021;477:203850.
  10. Han J, Dutta S, Ekkad S. Gas Turbine Heat Transfer and Cooling Technology. New York (NY): Taylor and Francis; 2012.
  11. Rajendran R. Gas turbine coatings—An overview. Eng Fail Anal. 2012;26:355–69.
  12. Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int Mater Rev. 2018;64:355–80.
  13. Azevedo C, Sinatora A. Erosion-fatigue of steam turbine blades. Eng Fail Anal. 2009;16:2290–303.
  14. Laguna-Camacho JR, Villagran Y, Martínez-García H, Juárez-Morales G, Cruz-Orduña MI, Manuel VT, et al. A study of the wear damage on gas turbine blades. Eng Fail Anal. 2015;61:88–99.
  15. Dubiel B, Moskalewicz T, Swadźba L, Czyrska-Filemonowicz A. Analytical TEM and SEM characterisation of aluminide coatings on nickel based superalloy CMSX-4. Surf Eng. 2008;24:327–31.
  16. Carter TJ. Common failures in gas turbine blades. Eng Fail Anal. 2005;12:237–47.
  17. Kopec M. Recent advances in the deposition of aluminide coatings on nickel-based superalloys: a synthetic review (2019–2023). Coatings. 2024;14:630. doi:10.3390/coatings14050630
  18. Qu S, Fu CM, Dong C, Tian JF, Zhang ZF. Failure analysis of the 1st stage blades in gas turbine engine. Eng Fail Anal. 2013;32:292–303.
  19. Kolagar AM, Tabrizi N, Cheraghzadeh M, Shahriari MS. Failure analysis of gas turbine first stage blade made of nickel-based superalloy. Case Stud Eng Fail Anal. 2017;8:61–8.
  20. Belan J, Vaško A, Tillová E. Microstructural analysis of DV–2 Ni–base superalloy turbine blade after high temperature damage. Procedia Eng. 2017;177:482–7.
  21. García-Martínez M, Del Hoyo Gordillo JC, Valles González MP, Pastor Muro A, González Caballero B. Failure study of an aircraft engine high pressure turbine (HPT) first stage blade. Eng Fail Anal. 2023;149:107251. doi:10.1016/j.engfailanal.2023.107251
  22. Bogdan M, Błachnio J, Spychała J, Zasada D. Assessment of usability of the exploited gas turbine blade heat resistant coatings. Eng Fail Anal. 2019;105:337–46. doi:10.1016/j.engfailanal.2019.07.016
  23. Villada JA, Bayro-Lazcano RG, Martinez-Franco E, Espinosa-Arbelaez DG, Gonzalez-Hernandez J, Alvarado-Orozco JM. Relationship between γ′ phase degradation and in-service GTD-111 first-stage blade local temperature. J Mater Eng Perform. 2019;28:1950–7.
  24. Zhu J, An C, Lu Y, Zhu M, Xuan F. Research progress on effect of γ' phase on strength, fatigue and creep properties of nickel-based superalloys. Mater Mech Eng. 2023;7(6):1–7. doi:10.11973/jxgccl202306001
  25. Ponańska A. Żywotność łopatek silników lotniczych ze stopu EI-867 w aspekcie odkształcenia niejednorodnego i zmian strukturalnych [doctoral dissertation]. Rzeszów: Rzeszów University of Technology; 2000.
  26. Xiaotong G, Weiwei Z, Chengbo X, Longfei L, Stoichko A, Yunrong Z, Qiang F. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating. Eng Fail Anal. 2019;103:308–18.
  27. Skočovský P, Podrábský T, Belan J. Degradacja w wyniku eksploatacji warstwy aluminiowo-krzemowej łopatek turbinowych wykonanych na bazie Ni. Archiwum Technologii Maszyn i Automatyzacji. 2004;24(1):45–52.
  28. Mevissen F, Meo M. A review of NDT/structural health monitoring techniques for hot gas components in gas turbines. Sensors. 2019;19:711.
  29. Kukla D, Kopec M, Sitek R, Olejnik A, Kachel S, Kiszkowiak Ł. A novel method for high temperature fatigue testing of nickel superalloy turbine blades with additional NDT diagnostics. Materials. 2021;14:1392. doi:10.3390/ma14061392
  30. Bogdan M, Derlatka M, Błachnio J. Concept of computer-aided assessment of the technical condition of operated gas turbine vanes. Pol Marit Res. 2018;3(99):104–12. doi:10.2478/pomr-2018-0101
  31. Bogdan M, Błachnio J, Kułaszka A, Zasada D. Investigation of the relationship between degradation of the coating of gas turbine blades and its surface colour. Materials. 2021;14:2478. doi:10.3390/ma14247843
  32. Bogdan M, Błachnio J, Kułaszka A, Derlatka M. Assessing the condition of gas turbine rotor blades with the optoelectronic and thermographic methods. Metals. 2019;9:31.
  33. Bogdan M, Zieliński W, Płociński T, Kurzydłowski KJ. Electron microscopy characterization of the high temperature degradation of the aluminide layer on turbine blades made of a nickel superalloy. Materials (Basel). 2020;13:3240. doi:10.3390/ma13143240
  34. Paton B. Żaroprocznost litiejnych nikieliewych spławow i zaszczuta ich ot okislienija. Kijew: Naukowa Dumka; 1997.
  35. Swadźba L. Kształtowanie struktury oraz właściwości powłok ochronnych na wybranych stopach stosowanych w lotniczych silnikach turbinowych. Katowice: Wydawnictwo Politechniki Śląskiej; 2007.
  36. Nikitin WI. Korrozija i zaszczita łopatok gazowych turbin. Leningrad; 1987.
DOI: https://doi.org/10.2478/ama-2025-0018 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 153 - 163
Submitted on: Jul 15, 2024
Accepted on: Nov 30, 2024
Published on: Mar 31, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mariusz Bogdan, Artur Kułaszka, Dariusz Zasada, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.