Have a personal or library account? Click to login
The Impact of the Gas Turbine Blade Heating Temperature in the Presence of Aviation Kerosene on Coating and Alloy Microstructure Cover

The Impact of the Gas Turbine Blade Heating Temperature in the Presence of Aviation Kerosene on Coating and Alloy Microstructure

Open Access
|Mar 2025

Figures & Tables

Fig. 1.

Example of blade convex (suction face) surfaces
Example of blade convex (suction face) surfaces

Fig. 2.

Sample roughness and undulation profile – new blade
Sample roughness and undulation profile – new blade

Fig. 3.

Impact of heating temperature on roughness profile changes – Ra
Impact of heating temperature on roughness profile changes – Ra

Fig. 4.

Impact of heating temperature on roughness profile changes – Rz
Impact of heating temperature on roughness profile changes – Rz

Fig. 5.

Blade surface morphology - new, not heated: a) BSE-TOPO; b) BSE
Blade surface morphology - new, not heated: a) BSE-TOPO; b) BSE

Fig. 6.

Blade surface morphology at 1123 K: a) BSE-TOPO; b) BSE
Blade surface morphology at 1123 K: a) BSE-TOPO; b) BSE

Fig. 7.

Blade surface morphology at 1223 K: a) BSE-TOPO; b) BSE
Blade surface morphology at 1223 K: a) BSE-TOPO; b) BSE

Fig. 8.

Blade surface morphology at 1323 K: a) BSE-TOPO; b) BSE
Blade surface morphology at 1323 K: a) BSE-TOPO; b) BSE

Fig. 9.

Blade surface morphology at 1423 K: a) BSE-TOPO; b) BSE
Blade surface morphology at 1423 K: a) BSE-TOPO; b) BSE

Fig. 10.

Blade surface morphology at 1523 K: a) BSE-TOPO and b) BSE
Blade surface morphology at 1523 K: a) BSE-TOPO and b) BSE

Fig. 11.

Blade surface morphology: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K
Blade surface morphology: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K

Fig. 12.

Percentage share by weight of elements on the surface of tested blades – (SEM/EDS)
Percentage share by weight of elements on the surface of tested blades – (SEM/EDS)

Fig. 13.

Percentage share of elements on the surface of tested blades – element mapping method
Percentage share of elements on the surface of tested blades – element mapping method

Fig. 14.

Total percentage share of oxides measured on the surfaces of tested blades
Total percentage share of oxides measured on the surfaces of tested blades

Fig. 15.

Percentage share of individual oxides measured on the surfaces of tested blades
Percentage share of individual oxides measured on the surfaces of tested blades

Fig. 16.

Blade coating microstructures by heating temperature: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K
Blade coating microstructures by heating temperature: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K

Fig. 17.

Changes in the thickness of the external and diffusion coating exposed to different temperatures
Changes in the thickness of the external and diffusion coating exposed to different temperatures

Fig. 18.

Chemical composition of the external coating part of a new blade and heated blades
Chemical composition of the external coating part of a new blade and heated blades

Fig. 19.

Chemical composition of the diffusion coating part of a new blade and heated blades
Chemical composition of the diffusion coating part of a new blade and heated blades

Fig. 20.

Blade alloy grain size by heating temperature: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K
Blade alloy grain size by heating temperature: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K

Fig. 21.

The dependence of a change in the average blade alloy grain size on heating temperature, expressed by an equivalent diameter of a circle with an area equal to the grain surface area
The dependence of a change in the average blade alloy grain size on heating temperature, expressed by an equivalent diameter of a circle with an area equal to the grain surface area

Fig. 22.

Blade alloy phase γ’ precipitate morphology by heating temperature: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K
Blade alloy phase γ’ precipitate morphology by heating temperature: a) new; b) 1123 K; c) 1223 K; d) 1323 K; e) 1423 K; f) 1523 K

Fig. 23.

Percentage precipitate content of individual phase γ' molecule size classes in the alloy
Percentage precipitate content of individual phase γ' molecule size classes in the alloy

Fig. 24.

Dependence of the average phase γ' precipitation in the alloy
Dependence of the average phase γ' precipitation in the alloy

Fig. 25.

Phase y’ precipitate microstructure of a new blade and heated blades (20000x zoom) – with visible coagulation, change of shape from cubic to irregular and phase precipitate undulation
Phase y’ precipitate microstructure of a new blade and heated blades (20000x zoom) – with visible coagulation, change of shape from cubic to irregular and phase precipitate undulation

Chemical composition of the superalloy used in the present study (wt_%)

CMnSiCrCoMoWAlBFeNi
maxmaxmax max Rest
0.10.30.69.014.010.35.04.50.024.0
DOI: https://doi.org/10.2478/ama-2025-0018 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 153 - 163
Submitted on: Jul 15, 2024
Accepted on: Nov 30, 2024
Published on: Mar 31, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mariusz Bogdan, Artur Kułaszka, Dariusz Zasada, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.