Have a personal or library account? Click to login
Moving Object Detection: A New Method Combining Background Subtraction, Fuzzy Entropy Thresholding and Differential Evolution Optimization Cover

Moving Object Detection: A New Method Combining Background Subtraction, Fuzzy Entropy Thresholding and Differential Evolution Optimization

Open Access
|Mar 2025

References

  1. Tsai DM, Lai SC. Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process. 2009;18(1):158–67. Available from: https://doi.org/10.1109/tip.2008.2007558
  2. Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. Proc IEEE Comput Vis Pattern Recognit. 2003;246–52. Available from: https://doi.org/10.1109/cvpr.1999.784637
  3. Xing-ju W, Yu-wei H, Ran-hang O. Method, model and application for the conversion from vague sets to fuzzy sets. Proc Int Conf Artif Intell Comput Intell AICI. 2009;510–3. Available from: https://doi.org/10.1109/aici.2009.397
  4. Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341–59. Available from: https://doi.org/10.1023/A:1008202821328
  5. Das S, Ponnuthurai S. Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput. 2011;15(1):4–31. Available from: https://doi.org/10.1109/tevc.2010.2059031
  6. Sarkar S, Paul S, Burman R, Das S, Chaudhuri S. A fuzzy entropy-based multi-level image thresholding using differential evolution. Int Conf Swarm Evol Memet Comput. 2014;386–95. Available from: https://doi.org/10.1007/978-3-319-20294-5_34
  7. Nihal P, Ashish S, Abhishek M, Partha P, Debi D. Moving object detection using modified temporal differencing and local fuzzy thresholding. J Supercomput. 2017;73:1120–39. Available from: https://doi.org/10.1007/s11227-016-1815-7
  8. Charansiriphaisan K, Sirapat C, Khamron S. A global multilevel thresholding using differential evolution approach. Math Probl Eng. 2014;1–23. Available from: https://doi.org/10.1155/2014/974024
  9. Yuanyuan J, Dong Z, Wenchang Z, Li W. Multi-level thresholding image segmentation based on improved slime mould algorithm and symmetric cross-entropy. Entropy. 2023;25(1):178. Available from: https://doi.org/10.3390/e25010178
  10. Jinzhong Z, Tan Z, Duansong W. A complex-valued encoding golden jackal optimization for multilevel thresholding image segmentation. Appl Soft Comput. 2024;165:112108. Available from: https://doi.org/10.1016/j.asoc.2024.112108
  11. Giveki D. Robust moving object detection based on fusing Atanassov’s intuitionistic 3D fuzzy histon roughness index and texture features. Int J Approx Reason. 2021;135:1–20. Available from: https://doi.org/10.1016/j.ijar.2021.04.007
  12. Giveki D, Montazer A, Soltanshahi A. Atanassov’s intuitionistic fuzzy histon for robust moving object detection. Int J Approx Reason. 2017;91:80–95. Available from: https://doi.org/10.1016/j.ijar.2017.08.014
  13. Giveki D, Soltanshahi A, Yousefvand M. Proposing a new feature descriptor for moving object detection. Optik. 2020;209:164563. Available from: https://doi.org/10.1016/j.ijleo.2020.164563
  14. Hathiram N, Ravi J. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput. 2018;62:1019–43. Available from: https://doi.org/10.1016/j.asoc.2017.09.039
  15. Yi W, Zhiming L, Pierre-Marc J. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput. 2018;62:1019–43. Available from: https://doi.org/10.1016/j.asoc.2017.09.039
  16. Cao W, Yuan J, He Z. Fast deep neural networks with knowledge guided training and predicted regions of interests for real-time video object detection. IEEE Access. 2018;6:8990–9. Available from: https://doi.org/10.1109/access.2018.2795798
  17. García-Aguilar I, Jorge G, Rafael M, Ezequiel L. Automated labeling of training data for improved object detection in traffic videos by fine-tuned deep convolutional neural networks. Pattern Recognit Lett. 2023;167:45–52. Available from: https://doi.org/10.1016/j.patrec.2023.01.015
  18. Talukdar J, Gupta S, Rajpura P, Hegde R. Transfer learning for object detection using state-of-the-art deep neural networks. Int Conf Signal Process Integr Netw SPIN. 2018. Available from: https://doi.org/10.1109/spin.2018.8474198
  19. Boufares O, Aloui N, Cherif A. Adaptive threshold for background subtraction in moving object detection using stationary wavelet transforms 2D. Int J Adv Comput Sci Appl. 2016;7(8). Available from: https://doi.org/10.14569/ijacsa.2016.070805
  20. Lu G, Kudo M, Toyama J. Temporal segmentation and assignment of successive actions in a long-term video. Pattern Recognit Lett. 2013;34(15):1936–44. Available from: https://doi.org/10.1016/j.patrec.2012.10.023
  21. Yong X, Jixiang D, Bob Z, Daoyun X. Background modeling methods in video analysis: A review and comparative evaluation. CAAI Trans Intell Technol. 2016;1(1):43–60. Available from: https://doi.org/10.1016/j.trit.2016.03.005
  22. Carolina R, Roberto L. Unsupervised learning from videos using temporal coherency deep networks. Comput Vis Image Underst. 2019;179:79–89. Available from: https://doi.org/10.1016/j.cviu.2018.08.003
  23. Oliver N, Rosario B, Pentland A. A Bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):831–43. Available from: https://doi.org/10.1109/34.868684
  24. Pierre-Luc S, Guillaume B, Robert B. SUBSENSE: A universal change detection method with local adaptive sensitivity. IEEE Trans Image Process. 2015;24(1):359–73. Available from: https://doi.org/10.1109/tip.2014.2378053
  25. Maddalena L, Petrosino A. The SOBS algorithm: What are the limits? Proc IEEE Workshop Change Detect CVPR. 2012. Available from: https://doi.org/10.1109/cvprw.2012.6238922
  26. Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction. Proc 17th Int Conf Pattern Recognit ICPR. 2004. Available from: https://doi.org/10.1109/icpr.2004.1333992
  27. Bouwmans T, Javed S, Sultana M, Jung S. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. arXiv. 2018. Available from: https://arxiv.org/pdf/1811.05255
  28. Wang Y, Jodoin PM, Porikli F, Konrad J, Benezeth Y, Ishwar P. CDnet 2014: An expanded change detection benchmark dataset. Proc IEEE Conf Comput Vis Pattern Recognit Workshops. 2014;387–94. Available from: https://www.opencv.org
  29. Maddalena L, Petrosino A. Towards benchmarking scene background initialization. Proc ICIAP Workshops. 2015;469–76. Available from: http://sbmi2015.na.icar.cnr.it/
  30. Cuevas C, Yez EM, García N. Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput Vis Image Underst. 2016;152:103–17. Available from: https://doi.org/10.1016/j.cviu.2016.01.012
  31. Stauffer C, Grimson WEL. Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):747–57. Available from: https://doi.org/10.1109/34.868684
  32. Berjón D, Cuevas C, Morán F, García N. Real-time non-parametric background subtraction with tracking-based foreground update. Pattern Recognit. 2018;74:156–70. Available from: https://doi.org/10.1016/j.patcog.2017.09.009
  33. Vacavant A, Chateau T, Wilhelm A, Lequievre L. A benchmark dataset for outdoor foreground/background extraction. Proc Asian Conf Comput Vis ACCV. 2012.
DOI: https://doi.org/10.2478/ama-2025-0013 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 106 - 116
Submitted on: Mar 28, 2024
Accepted on: Sep 25, 2024
Published on: Mar 31, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Oussama Boufares, Mohamed Boussif, Wajdi Saadaoui, Imed Miraoui, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.